
Contents i

Contents
Chapter 1 Overview of the JavaScript C Engine1

Supported Versions of JavaScript ..1

How Do You Use the Engine? ..2

How Does the Engine Relate to Applications? ...2

Building the Engine ...6

What Are the Requirements for Engine Embedding? ..6

Understanding Key Embedding Concepts ...8

Managing a Run Time ...10

Managing Contexts ..11

Initializing Built-in and Global JS Objects ...13

Creating and Initializing Custom Objects ..14

Providing Private Data for Objects ...17

Handling Unicode ..17

Working with JS Data Types ...18

Working with JS Values ...19

Working with JS Strings ...20

Unicode String Support ..20

Interned String Support ..20

Managing Security ...21

Chapter 2 JavaScript API Reference ...23

Macro Definitions ..24

JSVAL_IS_OBJECT ..25

JSVAL_IS_NUMBER ..25

JSVAL_IS_INT ...26

JSVAL_IS_DOUBLE ..26

JSVAL_IS_STRING ..27

JSVAL_IS_BOOLEAN ...27

JSVAL_IS_NULL ..28

ii JavaScript C Engine API Reference

JSVAL_IS_PRIMITIVE .. 28

JSVAL_IS_VOID ... 28

JSVAL_IS_GCTHING ... 29

JSVAL_TO_GCTHING ... 29

JSVAL_TO_OBJECT ... 30

JSVAL_TO_DOUBLE ... 30

JSVAL_TO_STRING ... 31

OBJECT_TO_JSVAL ... 31

DOUBLE_TO_JSVAL ... 32

STRING_TO_JSVAL ... 32

JSVAL_LOCK .. 32

JSVAL_UNLOCK .. 33

INT_FITS_IN_JSVAL .. 33

JSVAL_TO_INT .. 34

INT_TO_JSVAL .. 34

JSVAL_TO_BOOLEAN ... 35

BOOLEAN_TO_JSVAL ... 35

JSVAL_TO_PRIVATE ... 35

PRIVATE_TO_JSVAL ... 36

JSPROP_ENUMERATE ... 36

JSPROP_READONLY ... 37

JSPROP_PERMANENT ... 37

JSPROP_EXPORTED ... 38

JSPROP_INDEX ... 38

JSFUN_BOUND_METHOD ... 39

JSFUN_GLOBAL_PARENT .. 39

JSVAL_VOID .. 40

JSVAL_NULL .. 40

JSVAL_ZERO .. 41

JSVAL_ONE .. 41

JSVAL_FALSE ... 41

JSVAL_TRUE .. 42

JSCLASS_HAS_PRIVATE .. 42

Contents iii

JSCLASS_NEW_ENUMERATE .. 42

JSCLASS_NEW_RESOLVE .. 43

JSPRINCIPALS_HOLD .. 43

JSPRINCIPALS_DROP .. 44

JS_NewRuntime ... 44

JS_DestroyRuntime .. 45

JSRESOLVE_QUALIFIED ... 45

JSRESOLVE_ASSIGNING ... 46

Structure Definitions ... 46

JSClass .. 46

JSObjectOps ... 48

JSPropertySpec .. 50

JSFunctionSpec .. 51

JSConstDoubleSpec ... 52

JSPrincipals .. 53

JSErrorReport ... 55

JSIdArray .. 56

JSProperty .. 56

Function Definitions .. 57

JS_GetNaNValue .. 57

JS_GetNegativeInfinityValue ... 58

JS_GetPositiveInfinityValue ... 58

JS_GetEmptyStringValue ... 59

JS_ConvertArguments .. 59

JS_ConvertValue .. 61

JS_ValueToObject .. 62

JS_ValueToFunction .. 63

JS_ValueToString ... 64

JS_ValueToNumber ... 64

JS_ValueToInt32 .. 65

JS_ValueToECMAInt32 .. 66

JS_ValueToECMAUint32 .. 67

JS_ValueToUint16 .. 68

iv JavaScript C Engine API Reference

JS_ValueToBoolean ... 68

JS_ValueToId ... 69

JS_IdToValue ... 70

JS_TypeOfValue .. 70

JS_GetTypeName .. 71

JS_Init ... 71

JS_Finish .. 72

JS_Lock .. 72

JS_Unlock .. 72

JS_NewContext .. 73

JS_DestroyContext ... 74

JS_GetRuntime ... 74

JS_ContextIterator ... 74

JS_GetVersion .. 75

JS_SetVersion ... 76

JS_GetImplementationVersion .. 77

JS_GetGlobalObject ... 77

JS_SetGlobalObject .. 77

JS_InitStandardClasses ... 78

JS_GetScopeChain ... 78

JS_malloc ... 79

JS_realloc ... 79

JS_free .. 80

JS_strdup .. 81

JS_NewDouble .. 81

JS_NewDoubleValue ... 82

JS_NewNumberValue .. 83

JS_AddRoot .. 83

JS_AddNamedRoot .. 84

JS_DumpNamedRoots ... 85

JS_RemoveRoot ... 86

JS_BeginRequest .. 86

JS_EndRequest ... 87

Contents v

JS_SuspendRequest ... 87

JS_ResumeRequest .. 88

JS_LockGCThing .. 88

JS_UnlockGCThing .. 89

JS_GC ... 89

JS_MaybeGC .. 90

JS_SetGCCallback .. 90

JS_DestroyIdArray ... 91

JS_NewIdArray .. 91

JS_PropertyStub ... 91

JS_EnumerateStub ... 92

JS_ResolveStub .. 92

JS_ConvertStub .. 93

JS_FinalizeStub .. 94

JS_InitClass ... 94

JS_GetClass .. 96

JS_InstanceOf .. 96

JS_GetPrivate ... 97

JS_SetPrivate .. 97

JS_GetContextPrivate .. 98

JS_SetContextPrivate ... 98

JS_GetInstancePrivate .. 99

JS_GetPrototype .. 100

JS_SetPrototype ... 100

JS_GetParent .. 101

JS_SetParent ... 102

JS_GetConstructor ... 102

JS_NewObject .. 103

JS_ConstructObject .. 104

JS_DefineObject ... 105

JS_DefineConstDoubles .. 106

JS_DefineProperties ... 106

JS_DefineProperty ... 107

vi JavaScript C Engine API Reference

JS_DefineUCProperty .. 108

JS_DefinePropertyWithTinyId ... 110

JS_DefineUCPropertyWithTinyID ... 111

JS_AliasProperty .. 113

JS_LookupProperty ... 114

JS_LookupUCProperty .. 114

JS_GetProperty .. 115

JS_GetUCProperty ... 116

JS_SetProperty ... 116

JS_SetUCProperty .. 117

JS_DeleteProperty ... 118

JS_DeleteProperty2 ... 119

JS_DeleteUCProperty2 .. 120

JS_GetPropertyAttributes .. 121

JS_SetPropertyAttributes ... 122

JS_NewArrayObject ... 123

JS_IsArrayObject .. 123

JS_GetArrayLength .. 124

JS_SetArrayLength ... 124

JS_HasArrayLength .. 125

JS_DefineElement .. 126

JS_AliasElement ... 127

JS_LookupElement .. 128

JS_GetElement ... 129

JS_SetElement .. 129

JS_DeleteElement .. 130

JS_DeleteElement2 .. 131

JS_ClearScope .. 132

JS_Enumerate .. 132

JS_CheckAccess ... 133

JS_NewFunction .. 133

JS_GetFunctionObject ... 134

JS_GetFunctionName .. 135

Contents vii

JS_DefineFunctions ... 135

JS_DefineFunction ... 136

JS_CloneFunctionObject ... 137

JS_CompileScript ... 138

JS_CompileScriptForPrincipals .. 139

JS_CompileUCScript .. 140

JS_CompileUCScriptForPrincipals ... 141

JS_CompileFile ... 142

JS_NewScriptObject ... 143

JS_DestroyScript .. 143

JS_CompileFunction .. 143

JS_CompileFunctionForPrincipals ... 145

JS_CompileUCFunction ... 146

JS_CompileUCFunctionForPrincipals ... 147

JS_DecompileScript ... 148

JS_DecompileFunction .. 149

JS_DecompileFunctionBody ... 150

JS_ExecuteScript .. 151

JS_EvaluateScript ... 151

JS_EvaluateUCScript .. 152

JS_EvaluateScriptForPrincipals .. 153

JS_EvaluateUCScriptForPrincipals ... 155

JS_CallFunction .. 156

JS_CallFunctionName .. 157

JS_CallFunctionValue .. 158

JS_SetBranchCallback .. 159

JS_IsRunning .. 159

JS_IsConstructing ... 160

JS_NewString ... 160

JS_NewUCString .. 161

JS_NewStringCopyN .. 161

JS_NewUCStringCopyN ... 162

JS_NewStringCopyZ .. 163

viii JavaScript C Engine API Reference

JS_NewUCStringCopyZ ... 164

JS_InternString ... 164

JS_InternUCString .. 165

JS_InternUCStringN ... 166

JS_GetStringChars .. 166

JS_GetStringBytes .. 167

JS_GetStringLength .. 167

JS_CompareStrings .. 168

JS_ReportError ... 168

JS_ReportOutOfMemory ... 169

JS_SetErrorReporter ... 169

Chapter 1, Overview of the JavaScript C Engine 1

C h a p t e r

1
Chapter 1Overview of the JavaScript C Engine

This chapter provides an overview of the C language implementation of the
JavaScript (JS) engine, and it describes how you can embed engine calls in
your applications to make them JS-aware. There are two main reasons for
embedding the JS engine in your applications: to automate your applications
using scripts; and to use the JS engine and scripts whenever possible to
provide cross-platform functionality and eliminate platform-dependent
application solutions.

Supported Versions of JavaScript
The JS engine supports JS 1.0 through JS 1.4. JS 1.3 and greater conform to the
ECMAScript-262 specification. At its simplest, the JS engine parses, compiles,
and executes scripts containing JS statements and functions. The engine
handles memory allocation for the JS data types and objects needed to execute
scripts, and it cleans up—garbage collects—the data types and objects in
memory that it no longer needs.

How Do You Use the Engine?

2 JavaScript C Engine API Reference

How Do You Use the Engine?
Generally, you build the JS engine as a shared resource. For example, the
engine is a DLL on Windows and Windows NT, and a shared library on Unix.
Then you link your application to it, and embed JS engine application
programming interface (API) calls in your application. The JS engine’s API
provides functions that fall into the following broad categories:

• Data Type Manipulation

• Run Time Control

• Class and Object Creation and Maintenance

• Function and Script Execution

• String Handling

• Error Handling

• Security Control

• Debugging Support

You will use some of these functional categories, such as run time control and
data type manipulation, in every application where you embed JS calls. For
example, before you can make any other JS calls, you must create and initialize
the JS engine with a call to the JS_NewRuntime function. Other functional
catergories, such as security control, provide optional features that you can use
as you need them in your applications.

How Does the Engine Relate to Applications?
Conceptually, the JS engine is a shared resource on your system. By embedding
engine API calls in your applications you can pass requests to the JS engine for
processing. The engine, in turn, processes your requests, and returns values or
status information back to your application. Figure 1.1 illustrates this general
relationship:

Chapter 1, Overview of the JavaScript C Engine 3

How Does the Engine Relate to Applications?

Figure 1.1

For example, suppose you are using the JS engine to automate your application
using JS scripts, and suppose that one script your application runs authenticates
a user and sets a user’s access rights to the application. First, your application
might create a custom JS object that represents a user, including slots for the
user’s name, ID, access rights, and a potential list of functions that the user has
permission to use in the application.

In this case, your application’s first request to the JS engine might be a call to
JS_NewObject to create the custom object. When the JS engine creates the
object, it returns a pointer to your application. Your application can then call
the JS engine again to execute scripts that use the object. For example, after
creating the user object, your application might immediately pass a script to
JS_EvaluateScript for immediate compiling and executing. That script
might get and validate a user’s information, and then establish the user’s access
rights to other application features.

In truth, the actual relationship between your application and the JS engine is
somewhat more complex than shown in Figure 1.1. For example, it assumes
that you have already built the JS engine for your platform. It assumes that your
application code includes jsapi.h, and it assumes that the first call your
application makes to the engine initializes the JS run time.

When the JS engine receives an initialization request, it allocates memory for
the JS run time. Figure 1.2 illustrates this process:

Figure 1.2

1

2
Application JS Engine

Return Value

API Call

Application JS Engine Run Time
Return Value

JS_NewRuntime

How Does the Engine Relate to Applications?

4 JavaScript C Engine API Reference

The run time is the space in which the variables, objects, and contexts used by
your application are maintained. A context is the script execution state for a
thread used by the JS engine. Each simultaneously existent script or thread must
have its own context. A single JS run time may contain many contexts, objects,
and variables.

Almost all JS engine calls require a context argument, so one of the first things
your application must do after creating the run time is call JS_NewContext at
least once to create a context. The actual number of contexts you need
depends on the number of scripts you expect to use at the same time in your
application. You need one context for each simultaneously existing script in
your application. On the other hand, if only one script at a time is compiled
and executed by your application, then you need only create a single context
that you can then reuse for each script.

After you create contexts, you will usually want to initialize the built-in JS
objects in the engine by calling JS_InitStandardClasses. The built-in
objects include the Array, Boolean, Date, Math, Number, and String objects
used in most scripts.

Most applications will also use custom JS objects. These objects are specific to
the needs of your applications. They usually represent data structures and
methods used to automate parts of your application. To create a custom object,
you populate a JS class for the object, call JS_InitClass to set up the class
in the run time, and then call JS_NewObject to create an instance of your
custom object in the engine. Finally, if your object has properties, you may
need to set the default values for them by calling JS_SetProperty for each
property.

Even though you pass a specific context to the JS engine when you create an
object, an object then exists in the run time independent of the context. Any
script can be associated with any context to access any object. Figure 1.3
illustrates the relationship of scripts to the run time, contexts, and objects.

Chapter 1, Overview of the JavaScript C Engine 5

How Does the Engine Relate to Applications?

Figure 1.3

As Figure 1.3 also illustrates, scripts and contexts exist completely independent
from one another even though they can access the same objects. Within a given
run time, an application can always use any use any unassigned context to
access any object. There may be times when you want to ensure that certain
contexts and objects are reserved for exclusive use. In these cases, create
separate run times for your application: one for shared contexts and objects,
and one (or more, depending on your application’s needs) for private contexts
and objects.

Note Only one thread at a time should be given access to a specific context.

Context Context Context

Object Object Object Object

JS Run Time

Script Script Script

Building the Engine

6 JavaScript C Engine API Reference

Building the Engine
Before you can use JS in your applications, you must build the JS engine as a
shareable library. In most cases, the engine code ships with make files to
automate the build process.

For example, under Unix, the js source directory contains a base make file
called Makefile, and a config directory. The config directory contains
platform-specific .mak files to use with Makefile for your environment.
Under Windows NT the make file is jsmak.

Always check the source directory for any readme files that may contain late-
breaking or updated compilation instructions or information.

What Are the Requirements for Engine
Embedding?

To make your application JS-aware, embed the appropriate engine calls in your
application code. There are at least five steps to embedding:

1. Add #include jsapi.h to your C modules to ensure that the compiler
knows about possible engine calls. Specialized JS engine work may rarely
require you to include additional header files from the JS source code. For
example, to include JS debugger calls in your application, code you will
need to include jsdbgapi.h in the appropriate modules.

Most other header files in the JS source code should not be included. To do
so might introduce dependencies based on internal engine implementations
that might change from release to release.

2. Provide support structures and variable declarations in your application. For
example, if you plan on passing a script to the JS engine, provide a string
variable to hold the text version of the script in your application.Declare
structures and variables using the JS data types defined in jsapi.h.

3. Script application-specific objects using JavaScript. Often these objects will
correspond to structures and methods that operate on those structures in
your C programs, particularly if you are using the JS engine to automate
your application.

Chapter 1, Overview of the JavaScript C Engine 7

What Are the Requirements for Engine Embedding?

4. Embed the appropriate JS engine API calls and variable references in your
application code, including calls to initialize the built-in JS objects, and to
create and populate any custom objects your application uses.

5. Most JS engine calls return a value. If this value is zero or NULL, it usually
indicates an error condition. If the value is nonzero, it usually indicates
success; in these cases, the return value is often a pointer that your
application needs to use or store for future reference. At the very least, your
applications should always check the return values from JS engine calls.

The following code fragment illustrates most of these embedding steps, except
for the creation of JS scripts, which lies outside the scope of the introductory
text. For more information about creating scripts and objects using the
JavaScript language itself, see the Client-Side JavaScript Guide. For further
information about scripting server-side objects, see the Server-Side JavaScript
Guide.

.

.

.
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/* include the JS engine API header */

#include "jsapi.h"
.
.
.
/* main function sets up global JS variables, including run time,
* a context, and a global object, then initializes the JS run time,
* and creates a context. */

int main(int argc, char **argv)
{

int c, i;

/*set up global JS variables, including global and custom objects */

JSVersion version;
JSRuntime *rt;
JSContext *cx;
JSObject *glob, *it;
JSBool builtins;

/* initialize the JS run time, and return result in rt */

rt = JS_NewRuntime(8L * 1024L * 1024L);

Understanding Key Embedding Concepts

8 JavaScript C Engine API Reference

/* if rt does not have a value, end the program here */

if (!rt)
return 1;

/* create a context and associate it with the JS run time */

cx = JS_NewContext(rt, 8192);

/* if cx does not have a value, end the program here */

if (cx == NULL)
return 1;

/* create the global object here */
glob = JS_NewObject(cx, clasp, NULL, NULL);

/* initialize the built-in JS objects and the global object */

builtins = JS_InitStandardClasses(cx, glob);
.
.
.

This example code is simplified to illustrate the key elements necessary to
embed JS engine calls in your applications. For a more complete example—
from which these snippets were adapted—see js.c, the sample application
source code that is included with the JS engine source code.

Understanding Key Embedding Concepts
For most of the JavaScript aware applications you create, you will want to
follow some standard JS API embedding practices. The following sections
describe the types of API calls you need to embed in all your applications.

In many cases, the order in which you embed certain API calls is important to
successful embedding. For example, you must initialize a JS run time before
you can make other JS calls. Similarly, you should free the JS run time before
you close your application. Therefore, your application’s main function
typically sandwiches API calls for initializing and freeing the JS run time around
whatever other functionality you provide:

int main(int argc, char **argv)
{

int c, i;

/*set up global JS variables, including global and custom objects */

JSVersion version;

Chapter 1, Overview of the JavaScript C Engine 9

Understanding Key Embedding Concepts

JSRuntime *rt;
JSContext *cx;
JSObject *glob, *it;
.
.
.

/* initialize the JS run time, and return result in rt */

rt = JS_NewRuntime(8L * 1024L * 1024L);

/* if rt does not have a value, end the program here */

if (!rt)
return 1;

.

.

.

/* establish a context */

cx = JS_NewContext(rt, 8192);

/* if cx does not have a value, end the program here */

if (cx == NULL)
return 1;

/* initialize the built-in JS objects and the global object */

builtins = JS_InitStandardClasses(cx, glob);
.
.
.

/* include your application code here, including JS API calls */
/* that may include creating your own custom JS objects. The JS */
/* object model starts here. */

.

.

.

/* Before exiting the application, free the JS run time */

JS_DestroyRuntime(rt);

}

As this example illustrates, applications that embed calls to the JS engine are
responsible for setting up the JS run time as one of its first acts, and they are
responsible for freeing the run time before they exit. In general, the best place

Understanding Key Embedding Concepts

10 JavaScript C Engine API Reference

to ensure that the run time is initialized and freed is by embedding the
necessary calls in whatever module you use as the central JS dispatcher in your
application.

After you initialize the run time, you can establish your application’s JS object
model. The object model determines how your JS objects relate to one another.
JS objects are hierarchical in nature. All JS objects are related to the global
object by default. They are descendants of the global object. You automatically
get a global object when you initialize the standard JS classes:

builtins = JS_InitStandardClasses(cx, glob);

The global object sets up some basic properties and methods that are inherited
by all other objects. When you create your own custom objects, they
automatically use the properties and methods defined on the global object. You
can override these default properties and methods by defining them again on
your custom object, or you can accept the default assignments.

You can also create custom objects that are based on other built-in JS objects,
or that are based on other custom objects. In each case, the object you create
inherits all of the properties and methods of its predecessors in the hierarchical
chain, all the way up to the global object. For more information about global
and custom objects, see Initializing Built-in and Global JS Objects and Creating
and Initializing Custom Objects.

Managing a Run Time

The JS run time is the memory space the JS engine uses to manage the contexts,
objects, and variables associated with JS functions and scripts. Before you can
execute any JS functions or scripts you must first initialize a run time. The API
call that initializes the run time is JS_NewRuntime. JS_NewRuntime takes a
single argument, an unsigned integer that specifies the maximum number of
bytes of memory to allocate to the run time before garbage collection occurs.
For example:

rt = JS_NewRuntime(8L * 1024L * 1024L);

As this example illustrates, JS_NewRuntime also returns a single value, a
pointer to the run time it creates. A non-NULL return value indicates successful
creation of the run time.

Chapter 1, Overview of the JavaScript C Engine 11

Understanding Key Embedding Concepts

Normally, you only need one run time for an application. It is possible,
however, to create multiple run times by calling JS_NewRuntime as necessary
and storing the return value in a different pointer.

When the JS run time is no longer needed, it should be destroyed to free its
memory resources for other application uses. Depending on the scope of JS use
in your application, you may choose to destroy the run time immediately after
its use, or, more likely, you may choose to keep the run time available until
your application is ready to terminate. In either case, use the
JS_DestroyRuntime to free the run time when it is no longer needed. This
function takes a single argument, the pointer to the run time to destroy:

JS_DestroyRuntime(rt);

If you use multiple run times, be sure to free each of them before ending your
application.

Managing Contexts

Almost all JS API calls require you to pass a context as an argument. A context
identifies a script in the JavaScript engine. The engine passes context
information to the thread that runs the script. Each simultaneously-executing
script must be assigned a unique context. When a script completes execution,
its context is no longer in use, so the context can be reassigned to a new script,
or it can be freed.

To create a new context for a script, use JS_NewContext. This function takes
two arguments: a pointer to the run time with which to associate this context,
and the number of bytes of stack space to allocate for the context. If successful,
the function returns a pointer to the newly established context. For example:

JSContext *cx;

.

.

.

cx = JS_NewContext(rt, 8192);

Understanding Key Embedding Concepts

12 JavaScript C Engine API Reference

The run time must already exist. The stack size you specify for the context
should be large enough to accommodate any variables or objects created by the
script that uses the context. Note that because there is a certain amount of
overhead associated with allocating and maintaining contexts you will want to:

1. Create only as many contexts as you need at one time in your application.

2. Keep contexts for as long as they may be needed in your application rather
than destroying and recreating them as needed.

When a context is no longer needed, it should be destroyed to free its memory
resources for other application uses. Depending on the scope of JS use in your
application, you may choose to destroy the context immediately after its use,
or, more likely, you may choose to keep the context available for reuse until
your application is ready to terminate. In either case, use the
JS_DestroyContext to free the context when it is no longer needed. This
function takes a single argument, the pointer to the context to destroy:

JS_DestroyContext(cx);

If your application creates multiple run times, the application may need to
know which run time a context is associated with. In this case, call
JS_GetRuntime, and pass the context as an argument. JS_GetRuntime
returns a pointer to the appropriate run time if there is one:

rt = JS_GetRuntime(cx);

When you create a context, you assign it stack space for the variables and
objects that get created by scripts that use the context. You can also store large
amounts of data for use with a given context, yet minimize the amount of stack
space you need. Call JS_SetContextPrivate to establish a pointer to
private data for use with the context, and call JS_GetContextPrivate to
retrieve the pointer so that you can access the data. Your application is
responsible for creating and managing this optional private data.

To create private data and associate it with a context:

1. Establish the private data as you would a normal C void pointer variable.

2. Call JS_SetContextPrivate, and specify the context for which to
establish private data, and specify the pointer to the data.

For example:

JS_SetContextPrivate(cx, pdata);

Chapter 1, Overview of the JavaScript C Engine 13

Understanding Key Embedding Concepts

To retrieve the data at a later time, call JS_GetContextPrivate, and pass
the context as an argument. This function returns the pointer to the private
data:

pdata = JS_GetContextPrivate(cx);

Initializing Built-in and Global JS Objects

The JavaScript engine provides several built-in objects that simplify some of
your development tasks. For example, the built-in Array object makes it easy
for you to create and manipulate array structures in the JS engine. Similarly, the
Date object provides a uniform mechanism for working with and handling
dates. For a complete list of built-in objects supported in the engine, see the
reference entry for JS_InitStandardClasses.

The JS engine always uses function and global objects. In general, the global
object resides behind the scenes, providing a default scope for all other JS
objects and global variables you create and use in your applications. Before
you can create your own objects, you will want to initialize the global object.
The function object enables objects to have and call constructors.

A single API call, JS_InitStandardClasses, initializes the global and
function objects and the built-in engine objects so that your application can use
them:

JSBool builtins;
.
.
.
builtins = JS_InitStandardClasses(cx, glob);

JS_InitStandardClasses returns a JS boolean value that indicates the
success or failure of the initialization.

You can specify a different global object for your application. For example, the
Netscape Navigator uses its own global object, window. To change the global
object for you application, call JS_SetGlobalObject. For more information,
see the reference entry for JS_SetGlobalObject.

Understanding Key Embedding Concepts

14 JavaScript C Engine API Reference

Creating and Initializing Custom Objects

In addition to using the engine’s built-in objects, you will create, initialize, and
use your own JS objects. This is especially true if you are using the JS engine
with scripts to automate your application. Custom JS objects can provide direct
program services, or they can serve as interfaces to your program’s services. For
example, a custom JS object that provides direct service might be one that
handles all of an application’s network access, or might serve as an
intermediary broker of database services. Or a JS object that mirrors data and
functions that already exist in the application may provide an object-oriented
interface to C code that is not otherwise, strictly-speaking, object-oriented itself.
Such a custom object acts as an interface to the application itself, passing values
from the application to the user, and receiving and processing user input before
returning it to the application. Such an object might also be used to provide
access control to the underlying functions of the application.

There are two ways to create custom objects that the JS engine can use:

• Write a JS script that creates an object, its properties, methods, and
constructor, and then pass the script to the JS engine at run time.

• Embed code in your application that defines the object’s properties and
methods, call the engine to initialize a new object, and then set the object’s
properties through additional engine calls. An advantage of this method is
that your application can contain native methods that directly manipulate
the object embedding.

In either case, if you create an object and then want it to persist in the run time
where it can be used by other scripts, you must root the object by calling
JS_AddRoot or JS_AddNamedRoot. Using these functions ensures that the
JS engine will keep track of the objects and clean them up during garbage
collection, if appropriate.

Creating an Object From a Script

One reason to create a custom JS object from a script is when you only need an
object to exist as long as the script that uses it is executing. To create objects
that persist across script calls, you can embed the object code in your
application instead of using a script.

Note You can also use scripts to create persistent objects, too.

Chapter 1, Overview of the JavaScript C Engine 15

Understanding Key Embedding Concepts

To create a custom object using a script:

1. Define and spec the object. What is it intended to do? What are its data
members (properties)? What are its methods (functions)? Does it require a
run time constructor function?

2. Code the JS script that defines and creates the object. For example:

function myfun(){
var x = newObject();
.
.
.

Object scripting using JavaScript occurs outside the context of embedding
the JS engine in your applications. For more information about object
scripting, see the Client-Side JavaScript Guide and the Server-Side JavaScript
Guide.

3. Embed the appropriate JS engine call(s) in your application to compile and
execute the script. You have two choices: 1.) compile and execute a script
with a single call to JS_EvaluateScript or JS_EvaluateUCScript,
or 2.) compile the script once with a call to JS_CompileScript or
JS_CompileUCScript, and then execute it repeatedly with individual
calls to JS_ExecuteScript. The “UC” versions of these calls provide
support for Unicode-encoded scripts.

An object you create using a script only can be made available only during the
lifetime of the script, or can be created to persist after the script completes
execution. Ordinarily, once script execution is complete, its objects are
destroyed. In many cases, this behavior is just what your application needs. In
other cases, however, you will want object persistence across scripts, or for the
lifetime of your application. In these cases you need to embed object creation
code directly in your application, or you need to tie the object directly to the
global object so that it persists as long as the global object itself persists.

Embedding a Custom Object in an Application

Embedding a custom JS object in an application is useful when object
persistence is required or when you know that you want an object to be
available to several scripts. For example, a custom object that represents a
user’s ID and access rights may be needed during the entire lifetime of the

Understanding Key Embedding Concepts

16 JavaScript C Engine API Reference

application. It saves overhead and time to create and populate this object once,
instead of recreating it over and over again with a script each time the user’s ID
or permissions need to be checked.

One way to embed a custom object in an application is to:

1. Create a JSPropertySpec data type, and populate it with the property
information for your object, including the name of the property’s get and
set methods.

2. Create a JSFunctionSpec data type, and populate it with information
about the methods used by your object.

3. Create the actual C functions that are executed in response to your object’s
method calls.

4. Call to JS_NewObject or JS_ConstructObject to instantiate the
object.

5. Call JS_DefineFunctions to create the object’s methods.

6. Call JS_DefineProperties to create the object’s properties.

The code that describes persistent, custom JS objects should be placed near the
start of application execution, before any code that relies upon the prior
existence of the object. Embedded engine calls that instantiate and populate the
custom object should also appear before any code that relies on the prior
existence of the object.

Note An alternate, and in many cases, easier way to create a custom object in
application code is to call JS_DefineObject to create the object, and then
make repeated calls to JS_SetProperty to set the object’s properties. For
more information about defining an object, see JS_DefineObject. For more
information about setting an object’s properties, see JS_SetProperty.

Chapter 1, Overview of the JavaScript C Engine 17

Handling Unicode

Providing Private Data for Objects

Like contexts, you can associate large quantities of data with an object without
having to store the data in the object itself. Call JS_SetPrivate to establish a
pointer to private data for the object, and call JS_GetPrivate to retrieve the
pointer so that you can access the data. Your application is responsible for
creating and managing this optional private data.

To create private data and associate it with an object:

1. Establish the private data as you would a normal C void pointer variable.

2. Call JS_SetPrivate, specify the object for which to establish private
data, and specify the pointer to the data.

For example:

JS_SetContextPrivate(cx, obj, pdata);

To retrieve the data at a later time, call JS_GetPrivate, and pass the object
as an argument. This function returns the pointer to an object’s private data:

pdata = JS_GetContextPrivate(cx, obj);

Handling Unicode
The JS engine now provides Unicode-enabled versions of many API functions
that handle scripts, including JS functions. These functions permit you to pass
Unicode-encoded scripts directly to the engine for compilation and execution.
The following table lists standard engine functions and their Unicode
equivalents:

Standard Function Unicode-enabled Function

JS_DefineProperty JS_DefineUCProperty

JS_DefinePropertyWithTinyId JS_DefineUCPropertyWithTinyId

JS_LookupProperty JS_LookupUCProperty

JS_GetProperty JS_GetUCProperty

JS_SetProperty JS_SetUCProperty

JS_DeleteProperty2 JS_DeleteUCProperty2

Working with JS Data Types

18 JavaScript C Engine API Reference

Unicode-enabled functions work exactly like their traditional namesakes,
except that where traditional functions take a char * argument, the Unicode
versions take a jschar * argument.

Working with JS Data Types
JavaScript defines its own data types. Some of these data types correspond
directly to their C counterparts. Others, such as JSObject, jsdouble, and
JSString, are specific to JavaScript.

Generally, you declare and use JS data types in your application just as you do
standard C data types. The JS engine, however, keeps separate track of JS data
type variables that require more than a word of storage: JSObject,
jsdouble, and JSString. Periodically, the engine examines these variables
to see if they are still in use, and if they are not, it garbage collects them,
freeing the storage space for reuse.

Garbage collection makes effective reuse of the heap, but overly frequent
garbage collection may be a performance issue. You can control the
approximate frequency of garbage collection based on the size of the JS run
time you allocate for your application in relation to the number of JS variables
and objects your application uses. If your application creates and uses many JS
objects and variables, you may want to allocate a sufficiently large run time to
reduce the likelihood of frequent garbage collection.

JS_CompileScript JS_CompileUCScript

JS_CompileScriptForPrincipals JS_CompileUCScriptForPrincipals

JS_CompileFunction JS_CompileUCFunction

JS_CompileFunctionForPrincipals JS_CompileUCFunctionForPrincipals

JS_EvaluateScript JS_EvaluateUCScript

JS_EvaluateScriptForPrincipals JS_EvaluateUCScriptForPrincipals

JS_NewString JS_NewUCString

JS_NewStringCopyN JS_NewUCStringCopyN

JS_NewStringCopyZ JS_NewUCStringCopyZ

JS_InternString JS_InternUCString

— JS_InternUCStringN

Standard Function Unicode-enabled Function

Chapter 1, Overview of the JavaScript C Engine 19

Working with JS Values

Note Your application can also call JS_GC or JS_MaybeGC to force garbage
collection at any time. JS_GC forces garbage collection. JS_MaybeGC
performs conditional garbage collection only if a certain percentage of space
initially allocated to the run time is in use at the time you invoke the function.

Working with JS Values
In addition to JS data types, the JS engine also uses JS values, called jsvals. A
jsval is essentially a pointer to any JS data type except integers. For integers,
a jsval contains the integer value itself. In other cases, the pointer is encoded
to contain additional information about the type of data to which it points.
Using jsvals improves engine efficiency, and permits many API functions to
handle a variety of underlying data types.

The engine API contains a group of macros that test the JS data type of a jsval.
The following table lists these macros:

Besides testing a jsval for its underlying data type, you can test it to
determine if it is a primitive JS data type (JSVAL_IS_PRIMITIVE). Primitives
are values that are undefined, null, boolean, numeric, or string types.

You can also test the value pointed to by a jsval to see if it is NULL
(JSVAL_IS_NULL) or void (JSVAL_IS_VOID).

If a jsval points to a JS data type of JSObject, jsdouble, or jsstr, you
can cast the jsval to its underlying data type using JSVAL_TO_OBJECT,
JSVAL_TO_DOUBLE, and JSVAL_TO_STRING, respectively. This is useful in
some cases where your application or a JS engine call requires a variable or
argument of a specific data type, rather than a jsval. Similarly, you can
convert a JSObject, jsdouble, and jsstr to a jsval using
OBJECT_TO_JSVAL, DOUBLE_TO_JSVAL, and STRING_TO_JSVAL,
respectively.

Macro Macro Macro

JSVAL_IS_OBJECT JSVAL_IS_NUMBER JSVAL_IS_INT

JSVAL_IS_DOUBLE JSVAL_IS_STRING JSVAL_IS_BOOLEAN

Working with JS Strings

20 JavaScript C Engine API Reference

Working with JS Strings
Much of the work you do in JavaScript will involve strings. The JS engine
implements a JS string type, JSString, and a pointer to a JS character array,
jschar, used for handling Unicode-encoded strings. The engine also
implements a rich set of general and Unicode string management routines.
Finally, the JS engine offers support for interned strings, where two or more
separate invocations of string creation can share a single string instance in
memory. For strings of type JSString, the engine tracks and manages string
resources.

In general, when you are manipulating strings used by the JS engine, you
should use the JS API string-handling functions for creating and copying strings.
There are string management routines for creating both null-terminated strings
and for creating strings of specific length. There are also routines for
determining string length and comparing strings.

Unicode String Support

As with other API calls, the names of Unicode-enabled API string functions
correspond one-for-one with the standard engine API string function names as
follows: if a standard function name is JS_NewStringCopyN, the
corresponding Unicode version of the function is JS_NewUCStringCopyN.
Unicode-enabled API string functions are also available for interned string.

Interned String Support

To save storage space, the JS engine provides support for sharing a single
instance of a string among separate invocations. Such shared strings are called
“interned strings”. Use interned strings when you know that a particular, string
of text will be created and used more than once in an application.

The engine API offers several calls for working with interned strings:

• JS_InternString, for creating or reusing a JSString.

• JS_InternUCString, for creating or reusing a Unicode JSString.

Chapter 1, Overview of the JavaScript C Engine 21

Managing Security

• JS_InternUCStringN, for creating or reusing Unicode JSString of
fixed length.

Managing Security
With JavaScript 1.3, the JS engine added security-enhanced API functions for
compiling and evaluating scripts and functions passed to the engine. The JS
security model is based on the Java principals security model. This model
provides a common security interface, but the actual security implementation is
up to you.

One common way that security is used in a JavaScript-enabled application is to
compare script origins and perhaps limit script interactions. For example, you
might compare the codebase of two or more scripts in an application and only
allow scripts from the same codebase to modify properties of scripts that share
codebases.

To implement secure JS, follow these steps:

1. Declare one or more structs of type JSPrincipals in your application
code.

2. Implement the functions that will provide security information to the array.
These include functions that provide an array of principals for your
application, and mechanisms for incrementing and decrementing a
reference count on the number of JS objects using a given set of principles.

3. Populate the JSPrincipals struct with your security information. This
information can include common codebase information.

4. At run time, compile and evaluate all scripts and functions for which you
intend to apply security using the JS API calls that require you to pass in a
JSPrincipals struct. The following table lists these API functions and
their purposes:

Function Purpose

JS_CompileScriptForPrincipals Compiles, but does not execute, a security-enabled script.

JS_CompileUCScriptForPrincipals Compiles, but does not execute, a security-enabled, Unicode-
encoded script.

Managing Security

22 JavaScript C Engine API Reference

JS_CompileFunctionForPrincipals Creates a security-enabled JS function from a text string.

JS_CompileUCFunctionForPrincipals Creates a JS function with security information from a Unicode-
encoded character string.

JS_EvaluateScriptForPrincipals Compiles and executes a security-enabled script.

JS_EvaluateUCScriptForPrincipals Compiles and executes a security-enabled, Unicode-encoded
character script.

Chapter 2, JavaScript API Reference 23

C h a p t e r

2
Chapter 2JavaScript API Reference

This document describes the JavaScript C Engine API Reference, the macros,
functions, and structures that comprise the JavaScript application programmer’s
interface (JS API). You can use most of these API calls, macros, and structures
to embed JavaScript support in your applications. Some of the macros and
functions defined in this API are only for internal use, but are described here
because they are used by other API calls. Internal values are clearly labeled as
such.

Each section in this document is devoted to a different type of API construct.
For example, Macro Definitions lists and describes all the macros that define
internal and public data types, flags, and pseudo-functions used by JavaScript.

Within each section, each macro or function definition includes the following
sections:

• Heading, the name of the macro or function defined in the API.

• Brief description. An introductory phrase denoting whether the item is a
macro or a function, whether it is for public or internal use, and a summary
of its purpose. This section is intended to let you know immediately
whether the macro or function is one that you are interested in for your
current purpose.

• Syntax statement. The actual syntax of the macro or function as it appears
in the API. For functions with multiple arguments, the syntax statement may
be followed by an annotated table of arguments.

Macro Definitions

24 JavaScript C Engine API Reference

• Discussion. A full description of the macro or function, its intended
purpose, specific information about its arguments and return type, if any,
and any requirements, instructions, and limitations for using the macro or
function.

• Example. An optional section that illustrates how a macro or function might
be used in your code.

• See also. A list of related macros, functions, and type definitions that may be
of interest either because they are required or used by this macro or
function, or because they serve a similar purpose.

Macro Definitions
Macros in the JS API define:

• Fixed, named values that can be substituted in source code to improve
readability and maintenance.

• Calculated, named values that may differ in value depending on the
architecture and operating system of the host machine where a script runs.

• Pseudo functions, such as JSVAL_IS_OBJECT, that offer a shorthand way to
perform logical tests, or sometimes to perform complex calculations that are
frequently used by the JavaScript engine.

The following section lists macros defined in the JS API, and notes restrictions
on their uses where applicable. For example, some macro values are used only
within certain data structures.

Note Many macros, structure definitions, and functions, take or return values of type
jsval. While the definition of jsval is not part of the API proper, you should
know that it is a machine word containing either an aligned pointer whose low
three bits (the tag) encode type information, or a shifted, tagged boolean or
integer value. A jsval may represent any JS data type, although reference type
and double-precision number jsvals are actually pointers to out-of-line
storage allocated from a garbage-collected heap.

Chapter 2, JavaScript API Reference 25

Macro Definitions

JSVAL_IS_OBJECT
Macro. Determines if a specified value is a JS object.

Syntax JSVAL_IS_OBJECT(v)

Description Use JSVAL_IS_OBJECT to determine if a given JS value, v, is a JS object or
NULL. If the type tag for v is JSVAL_OBJECT, JSVAL_IS_OBJECT evaluates to
true. Otherwise, it evaluates to false. These return types are C values, not JS
Boolean values.

Example The following code snippet illustrates how a JavaScript variable, MyItem, is
conditionally tested in an if statement to see if it is a JS object.

if (JSVAL_IS_OBJECT(MyItem)) {
. . .

}

See also JSVAL_IS_NUMBER, JSVAL_IS_INT, JSVAL_IS_DOUBLE, JSVAL_IS_STRING,
JSVAL_IS_BOOLEAN, JSVAL_IS_PRIMITIVE, JSVAL_IS_NULL, JSVAL_IS_VOID,
JSVAL_IS_PRIMITIVE

JSVAL_IS_NUMBER
Macro. Determines if a specified value is a JS integer or double.

Syntax JSVAL_IS_NUMBER(v)

Description Use JSVAL_IS_NUMBER to determine if a given JS value, v, is an integer or
double value. If the type tag for v is JSVAL_INT or JSVAL_DOUBLE,
JSVAL_IS_NUMBER evaluates to true. Otherwise, it evaluates to false. These
return types are C values, not JS Boolean values.

Example The following code snippet illustrates how a JavaScript variable, MyItem, is
conditionally tested in an if statement to see if it is a JS integer or double
value.

if (JSVAL_IS_NUMBER(MyItem)) {
. . .

}

See also JSVAL_IS_OBJECT, JSVAL_IS_INT, JSVAL_IS_DOUBLE, JSVAL_IS_STRING,
JSVAL_IS_BOOLEAN, JSVAL_IS_PRIMITIVE, JSVAL_IS_NULL, JSVAL_IS_VOID,
JSVAL_IS_PRIMITIVE

Macro Definitions

26 JavaScript C Engine API Reference

JSVAL_IS_INT
Macro. Determines if a specified value is a JS integer data type.

Syntax JSVAL_IS_INT(v)

Description Use JSVAL_IS_INT to determine if a given JS value, v, is a JS integer value. If
the type tag for v is JSVAL_INT and is not JSVAL_VOID, JSVAL_IS_INT
evaluates to true. Otherwise, it evaluates to false. These return types are C
values, not JS Boolean values.

Example The following code snippet illustrates how a JavaScript variable, MyItem, is
conditionally tested in an if statement to see if it is a JS integer data type.

if (JSVAL_IS_INT(MyItem)) {
. . .

}

See also JSVAL_IS_OBJECT, JSVAL_IS_NUMBER, JSVAL_IS_DOUBLE, JSVAL_IS_STRING,
JSVAL_IS_BOOLEAN, JSVAL_IS_PRIMITIVE, JSVAL_IS_NULL, JSVAL_IS_VOID,
JSVAL_IS_PRIMITIVE

JSVAL_IS_DOUBLE
Macro. Determines if a specified JS value is a JS double data type.

Syntax JSVAL_IS_DOUBLE(v)

Description Use JSVAL_IS_DOUBLE to determine if a given value, v, is a JS double value. If
the type tag for v is JSVAL_DOUBLE, JSVAL_IS_DOUBLE evaluates to true.
Otherwise, it evaluates to false. These return types are C values, not JS
Boolean values.

Example The following code snippet illustrates how a JavaScript variable, MyItem, is
conditionally tested in an if statement to see if it is a JS double data type.

if (JSVAL_IS_DOUBLE(MyItem)) {
. . .

}

See also JSVAL_IS_OBJECT, JSVAL_IS_NUMBER, JSVAL_IS_INT, JSVAL_IS_STRING,
JSVAL_IS_BOOLEAN, JSVAL_IS_PRIMITIVE, JSVAL_IS_NULL, JSVAL_IS_VOID,
JSVAL_IS_PRIMITIVE

Chapter 2, JavaScript API Reference 27

Macro Definitions

JSVAL_IS_STRING
Macro. Determines if a specified JS value is a JS string data type.

Syntax JSVAL_IS_STRING(v)

Description Use JSVAL_IS_STRING to determine if a given JS value, v, is a JS string. If the
type tag for v is JSVAL_STRING, JSVAL_IS_STRING evaluates to true.
Otherwise, it evaluates to false. These return types are C values, not JS
Boolean values.

Example The following code snippet illustrates how a JavaScript variable, MyItem, is
conditionally tested in an if statement to see if it is a JS string data type.

if (JSVAL_IS_STRING(MyItem)) {
. . .

}

See also JSVAL_IS_OBJECT, JSVAL_IS_NUMBER, JSVAL_IS_INT, JSVAL_IS_DOUBLE,
JSVAL_IS_BOOLEAN, JSVAL_IS_PRIMITIVE, JSVAL_IS_NULL, JSVAL_IS_VOID,
JSVAL_IS_PRIMITIVE

JSVAL_IS_BOOLEAN
Macro. Determines if a specified value is a JS Boolean data type.

Syntax JSVAL_IS_BOOLEAN(v)

Description Use JSVAL_IS_BOOLEAN to determine if a given value, v, is a JS Boolean value.
If the type tag for v is JSVAL_BOOLEAN, JSVAL_IS_BOOLEAN evaluates to true.
Otherwise, it evaluates to false. These return types are C values, not JS
Boolean values.

Example The following code snippet illustrates how a JavaScript variable, MyItem, is
conditionally tested in an if statement to see if it is a JS Boolean data type.

if (JSVAL_IS_BOOLEAN(MyItem)) {
. . .

}

See also JSVAL_IS_OBJECT, JSVAL_IS_NUMBER, JSVAL_IS_INT, JSVAL_IS_DOUBLE,
JSVAL_IS_STRING, JSVAL_IS_PRIMITIVE, JSVAL_IS_NULL, JSVAL_IS_VOID,
JSVAL_IS_PRIMITIVE

Macro Definitions

28 JavaScript C Engine API Reference

JSVAL_IS_NULL
Macro. Determines if a specified JS value is null.

Syntax JSVAL_IS_NULL(v)

Description Use JSVAL_IS_NULL to determine if a given JS value, v, contains a null value. If
v is JSVAL_NULL, JSVAL_IS_NULL evaluates to true. Otherwise, it evaluates to
false. These return types are C values, not JS Boolean values.

Note Even though v may contain a null value, its type tag is always JSVAL_OBJECT.

Example The following code snippet illustrates how a JavaScript variable, MyItem, is
conditionally tested in an if statement to see if it contains a null value.

if (JSVAL_IS_NULL(MyItem)) {
. . .

}

See also JSVAL_IS_OBJECT, JSVAL_IS_NUMBER, JSVAL_IS_INT, JSVAL_IS_DOUBLE,
JSVAL_IS_STRING, JSVAL_IS_BOOLEAN, JSVAL_IS_PRIMITIVE,
JSVAL_IS_VOID, JSVAL_IS_PRIMITIVE

JSVAL_IS_PRIMITIVE
Macro. Determines if a given JS value is a primitive type.

Syntax JSVAL_IS_PRIMITIVE(v)

Description Use JSVAL_IS_PRIMITVE to determine if a specified jsval, v, is an instrinsic JS
primitive. Primitves are values that are undefined, null, boolean, numeric, or
string types. If v is one of these, JSVAL_IS_PRIMITVE returns true. If v is an
object, JSVAL_IS_PRIMITIVE returns false.

See also JSVAL_IS_OBJECT, JSVAL_IS_NUMBER, JSVAL_IS_INT, JSVAL_IS_DOUBLE,
JSVAL_IS_STRING, JSVAL_IS_BOOLEAN, JSVAL_IS_VOID, JSVAL_IS_NULL,
JSVAL_IS_PRIMITIVE

JSVAL_IS_VOID
Macro. Determines if a specified JS value is void.

Chapter 2, JavaScript API Reference 29

Macro Definitions

Syntax JSVAL_IS_VOID(v)

Description Use JSVAL_IS_VOID to determine if a given value, v, is void. If v is
JSVAL_VOID, JSVAL_IS_VOID evaluates to true. Otherwise, it evaluates to
false. These return types are C values, not JS Boolean values.

Note In JavaScript and in the ECMA language standard, the C type, void, indicates an
“undefined” value.

Example The following code snippet illustrates how a JavaScript variable, MyItem, is
conditionally tested in an if statement to see if it is void.

if (JSVAL_IS_VOID(MyItem)) {
. . .

}

See also JSVAL_IS_OBJECT, JSVAL_IS_NUMBER, JSVAL_IS_INT, JSVAL_IS_DOUBLE,
JSVAL_IS_STRING, JSVAL_IS_BOOLEAN, JSVAL_IS_PRIMITIVE,
JSVAL_IS_NULL, JSVAL_IS_PRIMITIVE

JSVAL_IS_GCTHING
Macro. Internal use only. Indicates whether or not a JS value must be garbage
collected.

Syntax JSVAL_IS_GCTHING(v)

Description JSVAL_IS_GCTHING determines whether or not a specified JS value, v, is a
pointer to value that must be garbage collected. JavaScript performs automatic
garbage collection of objects, strings, and doubles. If the type tag for v is not
JSVAL_INT and it is not JSVAL_BOOLEAN, JSVAL_IS_GCTHING evaluates to
true. Otherwise it evaluates to false.

See also JSVAL_TO_GCTHING

JSVAL_TO_GCTHING
Macro. Clears the type tag for specified JS value, so that the JS value can be
garbage collected if it is a string, object, or number.

Syntax JSVAL_TO_GCTHING(v)

Macro Definitions

30 JavaScript C Engine API Reference

Description JSVAL_TO_GCTHING clears the type tag for a specified JS value, v, so the JS
value can be garbage collected if it is a string, object, or number. It does so by
clearing the type tag, which results in clean pointer to the storage area for v.
The resulting value is cast to a void pointer.

See also JSVAL_IS_GCTHING

JSVAL_TO_OBJECT
Macro. Casts the type tag for a specified JS value and returns a pointer to the
value cast as a JS object.

Syntax JSVAL_TO_OBJECT(v)

Description JSVAL_TO_OBJECT clears a specified JS value, v, to a JS object. It does so by
casting the value’s type tag and casting the result to an object pointer.

Casting v to an object pointer manipulates its underlying type tag. v must be an
object jsval. Casting does not convert the value stored in v to a different data
type. To perform actual data type conversion, use the JS_ValueToObject
function.

Note This macro assumes that the JS type tag for v is already JSVAL_OBJECT.
Because JS values are represented as bit-shifted C integers, comparisons of
JSVAL_TO_OBJECT(v) to v itself are not equal unless you ignore the C pointer
type mismatch and v is an object reference.

See also JSVAL_TO_GCTHING, JSVAL_TO_DOUBLE, JSVAL_TO_STRING,
OBJECT_TO_JSVAL, DOUBLE_TO_JSVAL, STRING_TO_JSVAL,
JS_ValueToObject

JSVAL_TO_DOUBLE
Macro. Casts the type flag for a specified JS value and returns a pointer to the
value cast as a JS double.

Syntax JSVAL_TO_DOUBLE(v)

Description JSVAL_TO_DOUBLE casts a specified JS value, v, to a JS double. It does so by
casting the value’s type tag and casting the result to a double pointer.

Chapter 2, JavaScript API Reference 31

Macro Definitions

Clearing v to a double pointer manipulates its underlying type tag. It does not
convert the value stored in v to a different data type. To perform actual data
conversion, use the JS_ValueToNumber function.

Note This macro assumes that the JS type tag for v is already JSVAL_DOUBLE.
Because JS values are represented as bit-shifted C integers, comparisons of
JSVAL_TO_DOUBLE(v) to v itself are not equal unless you ignore the C pointer
type mismatch and v is an object reference.

See also JSVAL_TO_GCTHING, JSVAL_TO_OBJECT, JSVAL_TO_STRING,
OBJECT_TO_JSVAL, DOUBLE_TO_JSVAL, STRING_TO_JSVAL,
JS_ValueToNumber

JSVAL_TO_STRING
Macro. Casts the type tag for a specified JS value and returns a pointer to the
value cast as a JS string.

Syntax JSVAL_TO_STRING(v)

Description JSVAL_TO_STRING casts a specified JS value, v, to a JS string. It does so by
casting the value’s type tag and casting the result to a string pointer.

Casting v to a string pointer manipulate its underlying type tag. It does not
convert the value stored in v to a different data type. To perform actual data
type conversion, use the JS_ValueToString function.

Note This macro assumes that the JS type tag for v is already JSVAL_STRING.
Because JS values are represented as bit-shifted C integers, comparisons of
JSVAL_TO_STRING(v) to v itself are not equal unless you ignore the C pointer
type mismatch and v is an object reference.

See also JSVAL_TO_GCTHING, JSVAL_TO_OBJECT, JSVAL_TO_STRING,
OBJECT_TO_JSVAL, DOUBLE_TO_JSVAL, STRING_TO_JSVAL,
JS_ValueToString

OBJECT_TO_JSVAL
Macro. Casts a specified JS object to a JS value.

Syntax OBJECT_TO_JSVAL(obj)

Macro Definitions

32 JavaScript C Engine API Reference

Description OBJECT_TO_JSVAL casts a specified JS object, obj, to a JS value.

See also DOUBLE_TO_JSVAL, STRING_TO_JSVAL

DOUBLE_TO_JSVAL
Macro. Casts a specified JS double to a JS value.

Syntax DOUBLE_TO_JSVAL(dp)

Description DOUBLE_TO_JSVAL casts a specified JS double type, dp, to a JS value, jsval.
First it sets the double’s data type flag to JSVAL_DOUBLE and then performs the
cast.

See also OBJECT_TO_JSVAL, STRING_TO_JSVAL

STRING_TO_JSVAL
Macro. Casts a specified JS string to a JS value.

Syntax STRING_TO_JSVAL(str)

Description STRING_TO_JSVAL casts a specified JS string type, str, to a JS value, jsval.
First it sets the string’s data type flag to JSVAL_STRING and then performs the
cast.

See also OBJECT_TO_JSVAL, DOUBLE_TO_JSVAL

JSVAL_LOCK
Deprecated. Locks a JS value to prevent garbage collection on it.

Syntax JSVAL_LOCK(cx,v)

Description JSVAL_LOCK is a deprecated feature that is supported only for backward
compatibility with existing applications. To lock a value, use local roots with
JS_AddRoot.

Chapter 2, JavaScript API Reference 33

Macro Definitions

JSVAL_LOCK locks a JS value, v, to prevent the value from being garbage
collected. v is a JS object, string, or double value. Locking operations take
place within a specified JS context, cx.

JSVAL_LOCK determines if v is an object, string, or double value, and if it is, it
locks the value. If locking is successful, or v already cannot be garbage
collected because it is not an object, string, or double value, JSVAL_LOCK
evaluates to true. Otherwise JSVAL_LOCK evaluates to false.

See also JS_AddRoot, JSVAL_IS_GCTHING, JSVAL_TO_GCTHING, JSVAL_UNLOCK,
JS_LockGCThing

JSVAL_UNLOCK
Deprecated. Unlocks a JS value, enabling garbage collection on it.

Syntax JSVAL_UNLOCK(cx,v)

Description JSVAL_UNLOCK is a deprecated feature that is supported only for backward
compatibility with existing applications. To unlock a value, use local roots with
JS_RemoveRoot.

JSVAL_UNLOCK unlocks a previously locked JS value, v, so it can be garbage
collected. v is a JS object, string, or double value. Unlocking operations take
place within a specified JS context, cx.

JSVAL_UNLOCK determine if v is an object, string, or double value, and if it is, it
unlocks the value. If unlocking is successful, or v is not affected by garbage
collection because it is not an object, string, or double value, JSVAL_UNLOCK
evaluates to true. Otherwise JSVAL_UNLOCK evaluates to false.

See also JS_AddRoot, JSVAL_IS_GCTHING, JSVAL_TO_GCTHING, JSVAL_LOCK,
JS_LockGCThing

INT_FITS_IN_JSVAL
Macro. Determines if a specified value is a valid JS integer.

Syntax INT_FITS_IN_JSVAL(i)

Macro Definitions

34 JavaScript C Engine API Reference

Description Determines if a specified C integer value, i, lies within the minimum and
maximum ranges allowed for a jsval integer. If the value is within range, it
can become a valid JS integer, and INT_FITS_IN_JSVAL is true. Otherwise
INT_FITS_IN_JSVAL is false.

Example The following code snippet illustrates how a JavaScript variable, MyItem, is
conditionally tested in an if statement to see if it is a legal integer value.

if (INT_FITS_IN_JSVAL(MyItem)) {
. . .

}
else

JS_ReportError(MyContext, “Integer out of range: %s”,
MyItem);

See also JSVAL_TO_INT, INT_TO_JSVAL

JSVAL_TO_INT
Macro. Converts a JS integer value to an integer.

Syntax JSVAL_TO_INT(v)

Description JSVAL_TO_INT converts a specified JS integer value, v, to a C integer value by
performing a bitwise right shift operation. JSVAL_TO_INT assumes that it was
passed a JS value of type JSVAL_INT, and returns that JS value’s corresponding
C integer value. Note that because of the bit-shifting operation, that a C
comparison of JSVAL_TO_INT(v) to v always results in nonequality.

See also INT_TO_JSVAL, JSVAL_TO_BOOLEAN, JSVAL_TO_PRIVATE

INT_TO_JSVAL
Macro. Converts a specified integer value to a JS integer value.

Syntax INT_TO_JSVAL(i)

Description INT_TO_JSVAL converts a C integer, i, to a JS integer value type using a bitwise
left shift operation and OR’ing the result with the JSVAL_INT macro.

See also JSVAL_TO_INT, BOOLEAN_TO_JSVAL, PRIVATE_TO_JSVAL

Chapter 2, JavaScript API Reference 35

Macro Definitions

JSVAL_TO_BOOLEAN
Macro. Converts a JS value to a C true or false value.

Syntax JSVAL_TO_BOOLEAN(v)

Description JSVAL_TO_BOOLEAN converts a specified JS value, v, to a C true or false
value by performing a bitwise right shift operation. JSVAL_TO_BOOLEAN
assumes that it was passed a JS value of type JSVAL_BOOLEAN, and returns that
JS value’s corresponding C integer value.

See also BOOLEAN_TO_JSVAL, JSVAL_TO_INT, JSVAL_TO_PRIVATE

BOOLEAN_TO_JSVAL
Macro. Converts a specified C true or false value to a JS value.

Syntax BOOLEAN_TO_JSVAL(b)

Description BOOLEAN_TO_JSVAL converts a C true or false value, b, to a JS Boolean value
type using a bitwise left shift operation and setting the data type flag to
JSVAL_BOOLEAN.

See also JSVAL_TO_BOOLEAN, INT_TO_JSVAL, PRIVATE_TO_JSVAL

JSVAL_TO_PRIVATE
Macro. Casts a JS value to a private data pointer.

Syntax JSVAL_TO_PRIVATE(v)

Description JSVAL_TO_PRIVATE casts a JS value, v, to a void pointer to private data. Private
data is associated with an JS class on which the JSCLASS_HAS_PRIVATE
attribute is set. Private data is user-allocated, defined, and maintained. Private
pointers must be word aligned.

JSVAL_TO_PRIVATE returns an integer pointer cast as a void pointer.

See also PRIVATE_TO_JSVAL, JSCLASS_HAS_PRIVATE

Macro Definitions

36 JavaScript C Engine API Reference

PRIVATE_TO_JSVAL
Macro. Casts a private data pointer to a JS integer value.

Syntax PRIVATE_TO_JSVAL(p)

Description PRIVATE_TO_JSVAL enables you to store a private data pointer, p, as a JS value.
The private pointer must be word-aligned. Before passing a pointer to
PRIVATE_TO_JSVAL, test it with INT_FITS_IN_JSVAL to be verify that the
pointer can be cast to a legal JS integer value.

PRIVATE_TO_JSVAL casts a pointer to a JS integer value and sets the
JSVAL_INT type tag on it.

See also JSVAL_TO_PRIVATE, INT_FITS_IN_JSVAL

JSPROP_ENUMERATE
Macro. Public.Flag that indicates a property is visible to for and in loops.

Syntax JSPROP_ENUMERATE

Description JSPROP_ENUMERATE is a flag value that indicates a property belonging to a JS
object is visible to for and in loops. JSPROP_ENUMERATE is used to set or clear
the flags field in a JSPropertySpec structure so that a property can be made
visible or invisible to loops.

Note Property flags cannot be changed at run time. Instead, you either pass a set of
flags as an argument to JS_DefineProperty to create a single property with
fixed flag values, or you set property flags in a JSPropertySpec struct which is
then passed to the JS_DefineProperties function to create multiple
properties on a single object.

Example The following code fragment illustrates how JSPROP_ENUMERATE can be set for
a property structure before you call JS_DefineProperties:

JSPropertySpec MyProperty;
.
.
.
MyProperty.flags = MyProperty.flags | JSPROP_ENUMERATE;

Chapter 2, JavaScript API Reference 37

Macro Definitions

The following code fragment illustrates how JSPROP_ENUMERATE can be
cleared for a property structure before you call JS_DefineProperties:

JSPropertySpec MyProperty;
.
.
.
MyProperty.flags = MyProperty.flags & ~JSPROP_ENUMERATE;

See also JSPROP_READONLY, JSPROP_PERMANENT, JSPROP_EXPORTED,
JSPROP_INDEX, JSPropertySpec, JS_DefineProperty, JS_DefineProperties

JSPROP_READONLY
Macro. Flag that indicates a property is read only.

Syntax JSPROP_READONLY

Description JSPROP_READONLY is a flag value that indicates that the value for a property
belonging to a JS object cannot be set a run time. For JavaScript 1.2 and lower,
it is an error to attempt to assign a value to a property marked with the
JSPROP_READONLY flag. In JavaScript 1.3 and ECMA-Script, attempts to set a
value on a read-only property are ignored. You can, however, always check the
flags fields to determine if a property is read only.

Note Property flags cannot be changed at run time. Instead, you either pass a set of
flags as an argument to JS_DefineProperty to create a single property with
fixed flag values, or you set property flags in a JSPropertySpec struct which is
then passed to the JS_DefineProperties function to create multiple
properties on a single object.

See also JSPROP_ENUMERATE, JSPROP_PERMANENT, JSPROP_EXPORTED,
JSPROP_INDEX, JSPropertySpec, JS_DefineProperty, JS_DefineProperties

JSPROP_PERMANENT
Macro. Flag that indicates a property is permanent and cannot be deleted.

Syntax JSPROP_PERMANENT

Macro Definitions

38 JavaScript C Engine API Reference

Description JSPROP_PERMANENT is a flag value that indicates that the property belonging to
a JS object is a “permanent” property, one that cannot be deleted from the
object at run time. Attempting to delete a permanent property is JavaScript 1.2
or lower results in an error. In JavaScript 1.3 and ECMA-Script, such deletion
attempts are ignored. You can, however, always check the flags fields to
determine if a property is permanent.

Note Property flags cannot be changed at run time. Instead, you either pass a set of
flags as an argument to JS_DefineProperty to create a single property with
fixed flag values, or you set property flags in a JSPropertySpec struct which is
then passed to the JS_DefineProperties function to create multiple
properties on a single object.

See also JSPROP_ENUMERATE, JSPROP_READONLY, JSPROP_EXPORTED,
JSPROP_INDEX, JSPropertySpec, JS_DefineProperty, JS_DefineProperties

JSPROP_EXPORTED
Macro. Flag that indicates a property is exported from a JS object.

Syntax JSPROP_EXPORTED

Description JSPROP_EXPORTED is a flag value that indicates that a property can be imported
by other scripts or objects, typically to borrow security privileges.

Note Property flags cannot be changed at run time. Instead, you either pass a set of
flags as an argument to JS_DefineProperty to create a single property with
fixed flag values, or you set property flags in a JSPropertySpec struct which is
then passed to the JS_DefineProperties function to create multiple
properties on a single object.

See also JSPROP_ENUMERATE, JSPROP_READONLY, JSPROP_PERMANENT,
JSPROP_INDEX, JSPropertySpec, JS_DefineProperty, JS_DefineProperties

JSPROP_INDEX
Macro. Flag that indicates a property’s name is actually an index number into
an array.

Syntax JSPROP_INDEX

Chapter 2, JavaScript API Reference 39

Macro Definitions

Description JSPROP_INDEX is a flag value that indicates a property’s name will
automatically be cast to an integer value to use as an index into an array of
property values (elements).

Note Property flags cannot be changed at run time. Instead, you either pass a set of
flags as an argument to JS_DefineProperty to create a single property with
fixed flag values, or you set property flags in a JSPropertySpec struct which is
then passed to the JS_DefineProperties function to create multiple
properties on a single object.

See also JSPROP_ENUMERATE, JSPROP_READONLY, JSPROP_PERMANENT,
JSPROP_EXPORTED, JSPropertySpec, JS_DefineProperty, JS_DefineProperties

JSFUN_BOUND_METHOD
Deprecated. Macro. Flag that indicates a function nominally associated with an
object is bound, instead, to that object’s parent.

Syntax JSFUN_BOUND_METHOD

Description This macro is deprecated. JSFUN_BOUND_METHOD is a flag that indicates a
method associated with an object is bound to the object’s parent. This macro is
no longer needed because the JS engine now supports closures.

Note This macro exists only for backward compatibility with existing applications. Its
use is deprecated. Future versions of the JavaScript engine may not support or
recognize this macro.

See also JSFUN_GLOBAL_PARENT

JSFUN_GLOBAL_PARENT
Deprecated. Macro. Flag that indicates a call to a function nominally associated
with an object is called with the global object as its scope chain, rather than
with the parent of the function.

Syntax JSFUN_GLOBAL_PARENT

Macro Definitions

40 JavaScript C Engine API Reference

Description This macro is deprecated. Instead of using it, use JS_CloneFunctionObject.
JSFUN_GLOBAL_PARENT is a flag that indicates a call to a function nominally
associated with an object is called with the global object as its scope chain,
rather than with the parent of the function. This permits the function to operate
on free variables in the larger scope when they are found through prototype
lookups.

Note This macro exists only for backward compatibility with existing applications. Its
use is deprecated. Future versions of the JavaScript engine may not support or
recognize this macro.

See also JSFUN_BOUND_METHOD

JSVAL_VOID
Macro. Defines a void JS value.

Syntax JSVAL_VOID

Description JSVAL_VOID defines a void JS value. Currently this value is defined as
0-JSVAL_INT_POW2(30).

See also JSVAL_NULL, JSVAL_ZERO, JSVAL_ONE, JSVAL_FALSE, JSVAL_TRUE,
JS_NewContext

JSVAL_NULL
Macro. Defines a null JS value.

Syntax JSVAL_NULL

Description JSVAL_NULL defines a null JS value. Currently this value is defined as
OBJECT_TO_JSVAL(0).

See also OBJECT_TO_JSVAL, JSVAL_VOID, JSVAL_ZERO, JSVAL_ONE, JSVAL_FALSE,
JSVAL_TRUE, JS_NewContext

Chapter 2, JavaScript API Reference 41

Macro Definitions

JSVAL_ZERO
Macro. Defines a JS value of 0.

Syntax JSVAL_ZERO

Description JSVAL_ZERO defines a JS value of 0. Currently this value is defined as
INT_TO_JSVAL(0).

See also INT_TO_JSVAL, JSVAL_VOID, JSVAL_NULL, JSVAL_ONE, JSVAL_FALSE,
JSVAL_TRUE, JS_NewContext

JSVAL_ONE
Macro. Defines a JS value of 1.

Syntax JSVAL_ONE

Description JSVAL_ZERO defines a JS value of 1. Currently this value is defined as
INT_TO_JSVAL(1).

See also INT_TO_JSVAL, JSVAL_VOID, JSVAL_NULL, JSVAL_ZERO, JSVAL_FALSE,
JSVAL_TRUE, JS_NewContext

JSVAL_FALSE
Macro. Defines a false JS Boolean value.

Syntax JSVAL_FALSE

Description JSVAL_FALSE defines a false JS Boolean value. Currently this value is defined
as BOOLEAN_TO_JSVAL(JS_FALSE).

Note Do not compare JSVAL_FALSE with JS_FALSE in logical operations. These
values are not equal.

See also BOOLEAN_TO_JSVAL, JSVAL_VOID, JSVAL_NULL, JSVAL_ZERO, JSVAL_ONE,
JSVAL_TRUE, JS_NewContext

Macro Definitions

42 JavaScript C Engine API Reference

JSVAL_TRUE
Macro. Defines a true JS Boolean value.

Syntax JSVAL_TRUE

Description JSVAL_TRUE defines a true JS Boolean value. Currently this value is defined as
BOOLEAN_TO_JSVAL(JS_TRUE).

Note Do not compare JSVAL_TRUE with JS_TRUE in logical operations. These values
are not equal.

See also BOOLEAN_TO_JSVAL, JSVAL_VOID, JSVAL_NULL, JSVAL_ZERO, JSVAL_ONE,
JSVAL_FALSE, JS_NewContext

JSCLASS_HAS_PRIVATE
Macro. Flag that indicates a class instance has a private data slot.

Syntax JSCLASS_HAS_PRIVATE

Description JSCLASS_HAS_PRIVATE can be specified in the flags field of a JSClass struct
to indicate that a class instance has a private data slot. Set this flag if class
instances should be allowed to use the JS_GetPrivate and JS_SetPrivate
functions to store and retrieve private data.

See also JSClass

JSCLASS_NEW_ENUMERATE
Macro. Flag that indicates that the JSNewEnumerateOp method is defined for a
class.

Syntax JSCLASS_NEW_EUMERATE

Description JSCLASS_NEW_ENUMERATE can be specified in the flags field of a JSClass
struct to indicate that a class instance defines the JSNewEnumerateOp method.
This method is used for property enumerations when a class defines the
getObjectOps field.

See also JSCLASS_HAS_PRIVATE, JSCLASS_NEW_RESOLVE, JSClass, JSObjectOps

Chapter 2, JavaScript API Reference 43

Macro Definitions

JSCLASS_NEW_RESOLVE
Macro. Flag that indicates that the JSNewResolveOp method is defined for a
class.

Syntax JSCLASS_NEW_RESOLVE

Description JSCLASS_NEW_RESOLVE can be specified inthe flags field of a JSClass struct
to indicate that a class instance defines the JSNewResolveOp method. This
method is used for property resolutions when a class defines the
getObjectOps field.

See also JSCLASS_HAS_PRIVATE, JSCLASS_NEW_ENUMERATE, JSClass, JSObjectOps

JSPRINCIPALS_HOLD
Macro. Increments the reference count for a specified JSPrincipals struct.

Syntax JSPRINCIPALS_HOLD(cx, principals)

Description JSPRINCIPALS_HOLD maintains the specified principals in a JSPrincipals
struct, principals, for a specified JS context, cx. Principals are used by the JS
security mechanism. The hold is maintained by incrementing the reference
count field in the struct by 1.

Example The following code increments the principals reference count for the
MyPrincipals struct:

JSPrincipals MyPrincipals;
JSContext * MyContext;
JSRuntime *rt;
.
.
.
rt = Js_Init(32768);
MyContext = JS_NewContext(rt, 16384);
.
.
.
JSPRINCIPALS_HOLD(MyContext, MyPrincipals);

See also JSPRINCIPALS_DROP, JSPrincipals, JS_Init, JS_NewContext

Macro Definitions

44 JavaScript C Engine API Reference

JSPRINCIPALS_DROP
Macro. Decrements the reference count for a specified JSPrincipals struct,
and destroys the principals if the reference count is 0.

Syntax JSPRINCIPALS_DROP(cx, principals)

Description JSPRINCIPALS_DROP decrements the specified principals in a JSPrincipals
struct, principals, for a specified JS context, cx. The principals are dropped
by deccrementing the reference count field in the struct by 1. If the reference
count drops to zero, then JSPRINCIPALS_DROP also destroys the principals.

Example The following code decrements the principals reference count for the
MyPrincipals struct, destroying the principals as well:

JSPrincipals MyPrincipals;
JSContext * MyContext;
JSRuntime *rt;
.
.
.
rt = Js_Init(32768);
MyContext = JS_NewContext(rt, 16384);
.
.
.
JSPRINCIPALS_HOLD(MyContext, MyPrincipals);
.
.
.
JSPRINCIPALS_DROP(MyContext, MyPrincipals);

See also JSPRINCIPALS_HOLD, JSPrincipals, JS_Init, JS_NewContext

JS_NewRuntime
Macro. Initializes the JavaScript run time.

Syntax JS_NewRuntime(maxbytes);

Chapter 2, JavaScript API Reference 45

Macro Definitions

Description JS_NewRuntime initializes the JavaScript run time environment. Call
JS_NewRuntime before making any other API calls. JS_NewRuntime allocates
memory for the JS run time, and initializes certain internal run time structures.
maxbytes specifies the number of allocated bytes after which garbage
collection is run.

Generally speaking, most applications need only one JS run time. Each run time
is capable of handling multiple execution threads. You only need multiple run
times if your application requires completely separate JS engines that cannot
share values, objects, and functions.

If JS_NewRuntime is successful, it returns a pointer to the run time. Otherwise
it returns NULL.

See also JS_DestroyRuntime

JS_DestroyRuntime
Macro. Frees the JavaScript run time.

Syntax JS_DestroyRuntime(rt);

Description JS_DestroyRuntime frees the specified the JavaScript run time environment,
rt. Call JS_DestroyRuntime after completing all other JS API calls.
JS_DestroyRuntime garbage collects and frees the memory previously
allocated by JS_NewRuntime.

See also JS_NewRuntime

JSRESOLVE_QUALIFIED
Macro. Flag that specifies that a function’s identify can be uniquely resolved
without examining the function prototype chain.

Syntax JSRESOLVE_QUALIFIED

Description JSRESOLVE_QUALIFIED is flag that, if included in a function’s flags field,
indicates that its identify can be uniquely resolved without reference to its full
prototype chain.

See also JSFUN_BOUND_METHOD, JSFUN_GLOBAL_PARENT, JSRESOLVE_ASSIGNING

Structure Definitions

46 JavaScript C Engine API Reference

JSRESOLVE_ASSIGNING
Macro. Flag that specifies that a function’s identify can be uniquely resolved by
examining the left side of an assignment statement.

Syntax JSRESOLVE_ASSIGNING

Description JSRESOLVE_ASSIGNING is a flag that, if included in a function’s flags field,
indicates that its identity can be uniquely resolved simply by examing the left
side of an assignment statement.

See also JSFUN_BOUND_METHOD, JSFUN_GLOBAL_PARENT, JSRESOLVE_QUALIFIED

Structure Definitions
C struct definitions in the JS API define specific JavaScript data structures used
by many API functions. Key data structures define JS properties, functions, and
error reports. Others include a base class definition, a principals (secuirty)
definition, and a definition of a double value.

JSClass
Data structure. Defines a base class for use in building and maintaining JS
objects.

Syntax struct JSClass {
char *name;
uint32 flags;
/* Mandatory non-null function pointer members. */
JSPropertyOp addProperty;
JSPropertyOp delProperty;
JSPropertyOp getProperty;
JSPropertyOp setProperty;
JSEnumerateOp enumerate;
JSResolveOp resolve;
JSConvertOp convert;
JSFinalizeOp finalize;
/* Optionally non-null members start here. */
JSGetObjectOps getObjectOps;
JSCheckAccessOp checkAccess;

Chapter 2, JavaScript API Reference 47

Structure Definitions

JSNative call;
JSNative construct;
JSXDRObjectOp xdrObject;
JSHasInstanceOp hasInstance;
prword spare[2];

};

Argument Type Description

*name char Class name

flags uint32 Class attributes. 0 indicates no attributes are set. Attributes can be one
or both of the following values OR’d together:
JSCLASS_HAS_PRIVATE: class can use private data.
JSCLASS_NEW_ENUMERATE: class defines getObjectOps to point to
a new method for enumerating properties.
JSCLASS_NEW_RESOLVE: class defines getObjectOps to point to a
new method for property resolution.

addProperty JSPropertyOp Method for adding a property to the class.

delProperty JSPropertyOp Method for deleting a property from the class.

getProperty JSPropertyOp Method for getting a property value.

setProperty JSPropertyOp Method for setting a property value.

enumerate JSEnumerateOp Method for enumerating over class properties.

resolve JSResolveOp Method for resolving property ambiguities.

convert JSConvertOp Method for converting property values.

finalize JSFinalizeOp Method for finalizing the class.

getObjectOps JSGetObjectOps Pointer to an optional structure that defines method overrides for a
class. If you do not intend to override the default methods for a class,
set getObjectOps to NULL.

checkAccess JSCheckAccessOpPointer to an optional custom access control method for a class or
object operations structure. If you do not intend to provide custom
access control, set this value to NULL.

call JSNative Pointer to the method for calling into the object that represents this
class.

construct JSNative Pointer to the constructor for the object that represents this class

xdrObject JSXDRObjectOp Pointer to an optional XDR object and its methods. If you do not use
XDR, set this value to NULL.

hasInstance JSHasInstanceOpPointer to an optional hasInstance method for this object. If you do
not provide a method for hasInstance, set this pointer to NULL.

spare prword Reserved for future use.

Structure Definitions

48 JavaScript C Engine API Reference

Description Use JSClass to define a base class used in object creation and manipulation.
In your applications, you may use JSClass to declare a constructor function,
base properties, methods, and attributes common to a series of objects you
create.

By default, JSClass defines a set of default property access methods that can
be used by all objects derived in whole or in part from the class. You can
define getObjectOps to point to an optional JSObjectOps struct that contains
pointers to an array of methods that override the default access methods. For
more information about creating method overrides, see JSObjectOps.

See also JSCLASS_HAS_PRIVATE, JS_PropertyStub, JS_EnumerateStub, JS_ResolveStub,
JS_ConvertStub, JS_FinalizeStub, JS_InitClass, JS_GetClass, JS_InstanceOf,
JSObjectOps

JSObjectOps
Data structure. Defines pointers to custom override methods for a class.

Syntax struct JSObjectOps {
/* mandatory non-null function pointer members. */
JSNewObjectMapOp newObjectMap;
JSObjectMapOp destroyObjectMap;
JSLookupPropOp lookupProperty;
JSDefinePropOp defineProperty;
JSPropertyIdOp getProperty;
JSPropertyIdOp setProperty;
JSAttributesOp getAttributes;
JSAttributesOp setAttributes;
JSPropertyIdOp deleteProperty;
JSConvertOp defaultValue;
JSNewEnumerateOp enumerate;
JSCheckAccessIdOp checkAccess;
/* Optionally non-null members. */
JSObjectOp thisObject;
JSPropertyRefOp dropProperty;
JSNative call;
JSNative construct;
JSXDRObjectOp xdrObject;
JSHasInstanceOp hasInstance;
prword spare[2];

Chapter 2, JavaScript API Reference 49

Structure Definitions

};

Argument Type Description

newObjectMap JSNewObjectMapOp Pointer to the function that creates the object map for a
class. The object map stores property information for the
object, and is created when the object is created. This
pointer cannot be NULL.

destroyObjectMap JSObjectMapOp Pointer to the function that destroys the object map when it
is no longer needed. This pointer cannnot be NULL.

lookupProperty JSLookupPropOp Pointer to a custom property lookup method for the object.
This pointer cannnot be NULL.

defineProperty JSDefinePropOp Pointer to a custom property creation method for the object.
This pointer cannnot be NULL.

getProperty JSPropertyIdOp Pointer to a custom property value retrieval method for the
object. This pointer cannnot be NULL.

setProperty JSPropertyIdOp Pointer to a custom property value assignment method for
the object. This pointer cannnot be NULL.

getAttributes JSAttributesOp Pointer to a custom property attributes retrieval method for
the object. This pointer cannot be NULL.

setAttributes JSAttributesOp Pointer to a custom property attributes assignment method
for this object. This property cannot be NULL.

deleteProperty JSPropertyIdOp Pointer to a custom method for deleting a property
belonging to this object. This pointer cannot be NULL.

defaultValue JSConvertOp Pointer to a method for converting a property value. This
pointer cannot be NULL.

enumerate JSNewEnumerateOp Pointer to a custom method for enumerating over class
properties. This pointer cannot be NULL.

checkAccess JSCheckAccessIdOp Pointer to an optional custom access control method for a
this object. This pointer cannot be NULL.

thisObject JSObjectOp Pointer to an optional custom method that retrieves this
object. If you do not use this method, set thisObject to
NULL.

dropProperty JSPropertyRefOp Pointer to an optional, custom reference-counting method
that can be used to determine whether or not a property can
be deleted safely.If you do not use reference counting, set
dropProperty to NULL.

call JSNative Pointer to the method for calling into the object that
represents this class.

Structure Definitions

50 JavaScript C Engine API Reference

Description Use JSObjectOps to define an optional structure of pointers to custom
property methods for a class. If you define JSObjectOps, you can create
methods to override the default methods used by JSClass.

If you create a JSObjectOps structure for a given class, then you must also
supply or create methods for creating and destroying the object map used by
this object, and you must create custom methods for looking up, defining,
getting, setting, and deleting properties. You must also create methods for
getting and setting property attributes, checking object access privileges,
converting property values, and enumerating properties. All other fields are
optional, and if not used, should be set to NULL.

See also JSClass

JSPropertySpec
Data structure. Defines a single property for an object.

Syntax struct JSPropertySpec {
const char *name;
int8 tinyid;
uint8 flags;
JSPropertyOp getter;
JSPropertyOp setter;

construct JSNative Pointer to the constructor for the object that represents this
class

xdrObject JSXDRObjectOp Pointer to an optional XDR object and its methods. If you do
not use XDR, set this value to NULL.

hasInstance JSHasInstanceOp Pointer to an optional hasInstance method for this
object. If you do not provide an override method for
hasInstance, set this pointer to NULL.

spare prword Reserved for future use.

Chapter 2, JavaScript API Reference 51

Structure Definitions

};

Description JSPropertySpec defines the attributes for a single JS property to associate with
an object. Generally, you populate an array of JSPropertySpec to define all
the properties for an object, and then call JS_DefineProperties to create the
properties and assign them to an object.

See also JSPROP_ENUMERATE, JSPROP_READONLY, JSPROP_PERMANENT,
JSPROP_EXPORTED, JSPROP_INDEX, JS_PropertyStub, JS_EnumerateStub,
JS_ResolveStub, JS_ConvertStub, JS_FinalizeStub, JS_DefineProperty,
JS_DefineProperties, JS_DefinePropertyWithTinyId, JS_GetProperty,
JS_SetProperty, JS_DeleteProperty

JSFunctionSpec
Data structure. Defines a single function for an object.

Syntax struct JSFunctionSpec {
const char *name;
JSNative call;
uint8 nargs;
uint8 flags;
uint16 extra;

Argument Type Description

*name const char Name to assign to the property.

tinyid int8 Unique ID number for the property to aid in resolving getProperty and
setProperty method calls.

flags uint8 Property attributes. If 0, no flags are set. Otherwise, the following attributes
can be used singly or OR’d together:
JSPROP_ENUMERATE: property is visible in for loops.
JSPROP_READONLY: property is read-only.
JSPROP_PERMANENT: property cannot be deleted.
JSPROP_EXPORTED: property can be exported outside its object.
JSPROP_INDEX: property is actual an array element.

getter JSPropertyOp getProperty method for the property.

setter JSPropertyOp setProperty method for the property. Read-only properties should not
have a setProperty method.

Structure Definitions

52 JavaScript C Engine API Reference

};

Description JSFuctionSpec defines the attributes for a single JS function to associate with
an object. Generally, you populate an array of JSFunctionSpec to define all
the functions for an object, and then call JS_DefineFunctions to create the
functions and assign them to an object.

JSFunctionSpec can also be used to define an array element rather than a
named property. Array elements are actually individual properties. To define an
array element, cast the element’s index value to const char*, initialize the
name field with it, and specify the JSPROP_INDEX attribute in flags.

See also JSFUN_BOUND_METHOD, JSFUN_GLOBAL_PARENT, JS_NewFunction,
JS_GetFunctionObject, JS_GetFunctionName, JS_DefineFunctions,
JS_DefineFunction, JS_CompileFunction, JS_DecompileFunction,
JS_DecompileFunctionBody, JS_CallFunction, JS_CallFunctionName,
JS_CallFunctionValue, JS_SetBranchCallback

JSConstDoubleSpec
Data structure. Describes a double value and assigns it a name.

Syntax struct JSConstDoubleSpec {
jsdouble dval;
const char *name;
uint8 flags;
uint8 spare[3];

Argument Type Description

*name const char Name to assign to the function.

call JSNative The built-in JS call wrapped by this function. If the function does not wrap a
native JS call, set this value to NULL.

nargs uint8 Number of arguments to pass to this function.

flags uint8 Function attributes. If set to 0 the function has no attributes. Otherwise, existing
applications can set flags to either or both of the following attributes OR’d:
JSFUN_BOUND_METHOD
JSFUN_GLOBAL_PARENT
Note that these attributes are deprecated, and continue to be supported only for
backward compatibility with existing applications. New applications should not
use these attributes.

extra uint16 Reserved for future use.

Chapter 2, JavaScript API Reference 53

Structure Definitions

};

Description JSConstDoubleSpecs is typically used to define a set of double values that are
assigned as properties to an object using JS_DefineConstDoubles.
JS_DefineConstDoubles creates one or more double properties for a
specified object.

JS_DefineConstDoubles takes an argument that is a pointer to an array of
JSConstDoubleSpecs. Each array element defines a single property name and
property value to create. The last element of the array must contain zero-valued
values. JS_DefineConstDoubles creates one property for each non-zero
element in the array.

See also JSVAL_IS_DOUBLE, JSVAL_TO_DOUBLE, DOUBLE_TO_JSVAL,
JS_ValueToNumber, JS_NewDouble, JS_NewDoubleValue,
JS_DefineConstDoubles

JSPrincipals
Data structure. Defines security information for an object or script.

Syntax typedef struct JSPrincipals {
char *codebase;
void *(*getPrincipalArray)(JSContext *cx,
struct JSPrincipals *);

JSBool (*globalPrivilegesEnabled)(JSContext *cx,
struct JSPrincipals *);

uintN refcount;
void (*destroy)(JSContext *cx, struct JSPrincipals *);

Argument Type Description

dval jsdouble Value for the double.

name const char *Name to assign the double.

flags uint8 Attributes for the double. Currently these can be 0 or more of the following
values OR’d:
JSPROP_ENUMERATE: property is visible in for loops.
JSPROP_READONLY: property is read-only.
JSPROP_PERMANENT: property cannot be deleted.
JSPROP_EXPORTED: property can be exported outside its object.
JSPROP_INDEX: property is actually an array element.

spare uint8 Reserved for future use.

Structure Definitions

54 JavaScript C Engine API Reference

} JSPrincipals;

Description JSPrincipals is a structure that defines the connection to security data for an
object or script. Security data is defined independently of the JS engine, but is
passed to the engine through the JSPrincipals structure. This structure is
passed as an argument to versions of API calls that compile and evaluate scripts
and functions that depend on a security model. Some examples of security-
enhanced API call are JS_CompileScriptForPrincipals,
JS_CompileFunctionForPrincipals, and
JS_EvaluateScriptForPrincipals.

codebase points to the common codebase for this object or script. Only objects
and scripts that share a common codebase can interact.

getPrincipalArray is a pointer to the function that retrieves the principals for
this object or script.

globalPrivilegesEnabled is a flag that indicates whether principals are
enabled globally.

refcount is used to maintain active principals. Each time an object is
referenced, refcount must be increased by one. Each time an object is
dereferenced, refcount must be decremented by one. When refcount is
zero, the principals are no longer in use and are destroyed. Use the
JSPRINCIPALS_HOLD macro to increment refcount, and use
JS_PRINCIPALS_DROP to decrement refcount.

Argument Type Description

*codebase char Pointer to the codebase for the principal.

*getPrincipalArray void Pointer to the function that returns an array of principal
definitions.

*globalPrivilegesEnabled JSBool Flag indicating whether principals are enabled globally.

refcount uintN Reference count for the principals. Each reference to a
principal increments refcount by one. As principals
references are dropped, call the destroy method to
decrement the reference count and free the principals if
they are no longer needed.

*destroy void Pointer to the function that decrements the reference count
and possibly frees the principals if they are no longer in
use.

Chapter 2, JavaScript API Reference 55

Structure Definitions

See also JSPRINCIPALS_HOLD, JSPRINCIPALS_DROP, JS_CompileScriptForPrincipals,
JS_CompileUCScriptForPrincipals, JS_CompileFunctionForPrincipals,
JS_CompileUCFunctionForPrincipals, JS_EvaluateScriptForPrincipals

JSErrorReport
Data structure. Describes the format of a JS error that is used either by the
internal error reporting mechanism or by a user-defined error reporting
mechanism.

Syntax struct JSErrorReport {
const char *filename;
uintN lineno;
const char *linebuf;
const char *tokenptr;
const jschar *uclinebuf;
const jschar *uctokenptr;

};

Description JSErrorReport describes a single error that occurs in the execution of script.

In the event of an error, filename will either contain the name of the external
source file or URL containing the script (SCRIPT SRC=) or NULL, indicating that
a script embedded in the current HTML page caused the error.

lineno indicates the line number of the script containing the error. In the case
of an error in a script embedded in the HTML page, lineno indicates the HTML
lineno where the script error is located.

linebuf is a pointer to a user-defined buffer into which JS copies the offending
line of the script.

Argument Type Description

*filename const char Indicates the source file or URL that produced the error condition. If NULL,
the error is local to the script in the current HTML page.

lineno uintN Line number in the source that caused the error.

*linebuf const char Text of the line that caused the error, minus the trailing newline character.

*tokenptr const char Pointer to the error token in *linebuf.

*uclinebuf const jschar Unicode line buffer. This is the buffer that contains the original data.

*uctokenptr const jschar Pointer to the error token in *uclinebuf.

Structure Definitions

56 JavaScript C Engine API Reference

tokenptr is a pointer into linebuf that identifies the precise location line of
the problem within the offending line.

uclinebuf is a pointer to a user-defined buffer into which JS copies the
Unicode (original) version of the offending line of script.

uctokenptr is a pointer into uclinebuf that identifies the precise location line
of the problem within the offending Unicode (original) version of the offending
line.

To use JSErrorReport, your application must define a variable of type
JSErrorReport and allocate a buffer to hold the text that generated the error
condition. Set linebuf to point at the buffer before your application executes a
script. For Unicode scripts, define a second buffer that holds the Unicode
version of the text the generated the error. For application that do not use
Unicode, set uclinebuf and uctokenptr to NULL.

See also JS_ReportError, JS_ReportOutOfMemory, JS_SetErrorReporter

JSIdArray
Struct. Internal use only. Describes an array of property IDs to associated with
an object.

Syntax struct JSIdArray {
jsint length;
jsid vector[1];

};

Description JSIdArray is used internally by the JS engine to hold IDs for enumerated
properties associated with an object.

See also JSProperty

JSProperty
Struct. Internal use only. Describes a single ID value for a JS property.

Syntax struct JSProperty {
jsid id;

};

Chapter 2, JavaScript API Reference 57

Function Definitions

Description JSProperty is used by the JS engine to hold a unique ID to a property
belonging to an object.

See also JSIdArray

Function Definitions
Functions in the JS API define specific JavaScript tasks, such as creating
contexts, properties, objects, or arrays. They also provide methods of
manipulating and examining the JavaScript items you create. The following
section lists the functions defined in the JS API, and notes restrictions on their
uses where applicable.

JS_GetNaNValue
Function. Retrieves the numeric representation for not-a-number (NaN) for a
specified JS context.

Syntax jsval JS_GetNaNValue(JSContext *cx);

Description JS_GetNanValue retrieves a numeric representation of NaN given a specific JS
context, cx. JS_GetNaNValue returns a JS value that corresponds to the IEEE
floating point quiet NaN value.

NaN is typically used in JavaScript to represent numbers that fall outside the
valid range for integer or double values. NaN can also be used in error
conditions to represent a numeric value that falls outside a prescribed
programmatic range, such as an input value for a month variable that is not
between 1 and 12.

Comparing NaN to any other numeric value or to itself always results in an
unequal comparison.

See also JS_GetNegativeInfinityValue, JS_GetPositiveInfinityValue,
JS_GetEmptyStringValue

Function Definitions

58 JavaScript C Engine API Reference

JS_GetNegativeInfinityValue
Function. Retrieves the negative infinity representation for a specified JS
context.

Syntax jsval JS_GetNegativeInfinityValue(JSContext *cx);

Description JS_GetNegativeInfinityValue retrieves a numeric representation of
negative-infinity, given a specific JS context, cx.
JS_GetNegativeInfinityValue returns a JS value.

Negative infinity is typically used in JavaScript to represent numbers that are
smaller than the minimum valid integer or double value.

As a value in mathematical calculations, negative infinity behaves like infinity.
For example, anything multiplied by infinity is infinity, and anything divided by
infinity is zero.

See also JS_GetNaNValue, JS_GetPositiveInfinityValue, JS_GetEmptyStringValue

JS_GetPositiveInfinityValue
Function. Retrieves the numeric representation of infinity for a specified JS
context.

Syntax jsval JS_GetPositiveInfinityValue(JSContext *cx);

Description JS_GetPositiveInfinityValue retrieves the numeric representation of
infinity, given a specific JS context, cx. JS_GetPositiveInfinityValue
returns a JS value.

The infinity representation is typically used in JavaScript to represent numbers
that are larger than the maximum valid integer or double value.

As a value in mathematical calculations infinite values behaves like infinity. For
example, anything multiplied by infinity is infinity, and anything divided by
infinity is zero.

See also JS_GetNaNValue, JS_GetNegativeInfinityValue, JS_GetEmptyStringValue

Chapter 2, JavaScript API Reference 59

Function Definitions

JS_GetEmptyStringValue
Function. Retrieves the representation of an empty string for a specified JS
context.

Syntax jsval JS_GetEmptyStringValue(JSContext *cx);

Description JS_GetEmptyStringValue retrieves an empty string for a specified JS context,
cx, and returns it as a JS value.

See also JS_GetNaNValue, JS_GetNegativeInfinityValue, JS_GetPositiveInfinityValue

JS_ConvertArguments
Function. Converts a series of JS values, passed in an argument array, to their
corresponding JS types.

Syntax JSBool JS_ConvertArguments(JSContext *cx, uintN argc,
jsval *argv, const char *format, ...);

Description JS_ConvertArguments provides a convenient way to translate a series of JS
values into their corresponding JS types with a single function call. It saves you
from having to write separate tests and elaborate if...else statements in your
function code to retrieve and translate multiple JS values for use with your own
functions.

cx is the context for the call. argc indicates the number of JS values you are
passing in for conversion. argv is a pointer to the array of JS values to convert.

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

argc uintN The number of arguments to convert.

argv jsval * Pointer to the vector of arguments to convert.

format char * Character array containing the recognized format to which to convert

... void * A variable number of pointers into which to store the converted types. There
should be one pointer for each converted value.

Function Definitions

60 JavaScript C Engine API Reference

format is a sequential character array, where each element of the array
indicates the JS type into which to convert the next available JS value. format
can contain one or more instances of the following characters, as appropriate:

For example, if format is “bIfb”, then JS_ConvertArguments converts the
first JS value in argv into a JSBool, the second value into a jsdouble, the third
value into a JSObject, and the last value into a JSBool.

To skip a given argument, pass an asterisk in the corresponding position in
format.

JS_ConvertArguments expects to be passed an argument vector that belongs
to a native JS function, such that every argument passed is already a JS value.
By default, when you first call JS_ConvertArguments, it automatically
provides built-in error checking to guarantee that the proper number of
arguments has been passed. If an improper number of arguments is passed in,
JS_ConvertArguments reports an error and terminates. You can turn off this
error-checking at any time by passing a slash (/) as a character any place in
format where you no longer desire the argument number check to be made.

Character Corresponding JS type to which to convert the value

b JSBool

c uint16 (16-bit, unsigned integer)

i int32 (32-bit, ECMA-compliant signed integer)

u uint32 (32-bit, ECMA-compliant, unsigned integer)

j int32 (32-bit, signed integer)

d jsdouble

I jsdouble (converted to an integer value)

s JSString (treated as an array of characters)

S JSString

o JSObject

f JSFunction

* None. If an asterisk (*) is present in format, it tells the conversion
routine to skip converting the current argument.

/ None. If a slash (/) is present in format, it tells the conversion
routine to turn off checking that the argument vector was passed to
JS_ConvertArguments from a valid native JS function.

Chapter 2, JavaScript API Reference 61

Function Definitions

When you call JS_ConvertArguments, the arguments you pass in after format
must be a series of pointers to storage. You must allocate one storage pointer
for each converted value you expect.

If JS_ConvertArgument successfully converts all arguments, it returns
JS_TRUE. Otherwise it returns JS_FALSE.

See also JS_ConvertValue, JS_ValueToObject, JS_ValueToFunction, JS_ValueToString,
JS_ValueToNumber, JS_ValueToInt32, JS_ValueToECMAInt32,
JS_ValueToECMAUint32, JS_ValueToUint16, JS_ValueToBoolean, JS_ValueToId

JS_ConvertValue
Function. Converts a JS value to a value of a specific JS type.

Syntax JSBool JS_ConvertValue(JSContext *cx, jsval v, JSType type,
jsval *vp);

Description JS_ConvertValue converts a specified JS value, v, to a specified JS type, type.
Conversion occurs within a specified JS context, cx. The converted value is
stored in the jsval pointed to by vp. Typically users of this function set vp to
point to v, so that if conversion is successful, v now contains the converted
value.

JS_ConvertValue calls other, type-specific conversion routines based on what
you specify in type. These include JS_ValueToFunction, JS_ValueToString,
JS_ValueToNumber, and JS_ValueToBoolean.

Converting any JS value to JSTYPE_VOID always succeeds.

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

v jsval The JS value to convert.

type JSType The type to which to convert the value. type must be one of JSTYPE_VOID,
JSTYPE_OBJECT, JSTYPE_FUNCTION, JSTYPE_STRING, JSTYPE_NUMBER,
or JSTYPE_BOOLEAN. Otherwise JS_ConvertValue reports an error.

vp jsval * Pointer to the JS value that contains the converted value when the function
returns.

Function Definitions

62 JavaScript C Engine API Reference

Converting to JSTYPE_OBJECT is successful if the JS value to convert is one of
JSVAL_INT, JSVAL_DOUBLE, JSVAL_STRING, JSVAL_BOOLEAN, or
JSVAL_OBJECT.

Converting to JSTYPE_FUNCTION is successful if the JS value to convert is an
object for which a function class has been defined, or if the JS value is already
a function.

Converting any JS value to JSTYPE_STRING always succeeds.

Converting a JS value to JSTYPE_NUMBER succeeds if the JS value to convert is a
JSVAL_INT, JSVAL_DOUBLE, or JSVAL_BOOLEAN. If the JS value is a
JSVAL_STRING that contains numeric values and signs only, conversion also
succeeds. If the JS value is a JSVAL_OBJECT, conversion is successful if the
object supports its own conversion function.

Converting any JS value to JSTYPE_BOOLEAN always succeeds, except when the
JS value is a JSVAL_OBJECT that does not support its own conversion routine.

If the conversion is successful, JS_ConvertValue returns JS_TRUE, and vp
points to the converted value. Otherwise, it returns JS_FALSE, and vp is either
undefined, or points to the current value of v, depending on how you
implement your code.

Note Converting a JS value from one type to another does not change the actual data
value stored in the item.

See also JS_ConvertArguments, JS_ValueToObject, JS_ValueToFunction,
JS_ValueToString, JS_ValueToNumber, JS_ValueToInt32, JS_ValueToBoolean,
JS_TypeOfValue, JS_GetTypeName

JS_ValueToObject
Function. Converts a JS value to a JS object.

Syntax JSBool JS_ValueToObject(JSContext *cx, jsval v,
JSObject **objp);

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

v jsval The JS value to convert.

objp JSObject ** Pointer to the JS object into which to store the converted value.

Chapter 2, JavaScript API Reference 63

Function Definitions

Description JS_ValueToObject converts a specified JS value, v, to a JS object. Conversion
occurs within a specified JS context, cx. The converted object is stored in the
object pointed to by objp. If the conversion is successful, JS_ValueToObject
returns JS_TRUE. Otherwise it returns JS_FALSE.

You can successfully convert a JS value to an object if the JS value to convert is
one of JSVAL_INT, JSVAL_DOUBLE, JSVAL_STRING, JSVAL_BOOLEAN, or
JSVAL_OBJECT. Note that if v is already an object, the object returned in objp
represents a converted version of v, rather than original version of v.

Note Converting a JS value to an object subjects the resulting object to garbage
collection unless you protect against it using a local root, an object property, or
the JS_AddRoot function.

See also JS_ConvertArguments, JS_ConvertValue, JS_ValueToFunction, JS_ValueToString,
JS_ValueToNumber, JS_ValueToInt32, JS_ValueToBoolean, JS_TypeOfValue,
JS_GetTypeName, JS_AddRoot

JS_ValueToFunction
Function. Converts a JS value to a JS function.

Syntax JSFunction * JS_ValueToFunction(JSContext *cx, jsval v);

Description JS_ValueToFunction converts a specified JS value, v, to a JS function. The
actual conversion is performed by the object’s convert operation. Conversion
occurs within a specified JS context, cx. JS_ValueToFunction returns a
pointer to the converted function.

Converting a JS value to a function succeeds if the value is an object for which
a function class has been defined, or if the JS value is already a function. If
conversion fails, JS_ValueToFunction returns NULL.

See also JS_ConvertArguments, JS_ConvertValue, JS_ValueToObject, JS_ValueToString,
JS_ValueToNumber, JS_ValueToInt32, JS_ValueToBoolean, JS_TypeOfValue,
JS_GetTypeName

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

v jsval The JS value to convert.

Function Definitions

64 JavaScript C Engine API Reference

JS_ValueToString
Function. Converts a JS value to a JS string.

Syntax JSString * JS_ValueToString(JSContext *cx, jsval v);

Description JS_ValueToString converts a specified JS value, v, to a JS string. The actual
conversion is performed by the object’s convert operation. Conversion occurs
within a specified JS context, cx. JS_ValueToString always returns a pointer
to a string. The original value is untouched.

Note Converting a JS value to a string subjects the resulting string to garbage
collection unless you protect against it using a local root, an object property, or
the JS_AddRoot function.

See also JS_ConvertArguments, JS_ConvertValue, JS_ValueToObject,
JS_ValueToFunction, JS_ValueToNumber, JS_ValueToInt32,
JS_ValueToBoolean, JS_TypeOfValue, JS_GetTypeName, JS_AddRoot

JS_ValueToNumber
Function. Converts a JS value to a JS double.

Syntax JSBool JS_ValueToNumber(JSContext *cx, jsval v,
jsdouble *dp);

Description JS_ValueToNumber converts a specified JS value, v, to a JS double. The actual
conversion is performed by the object’s convert operation. Conversion occurs
within a specified JS context, cx. The converted value is stored in the jsdouble
pointed to by dp.

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

v jsval The JS value to convert.

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

v jsval The JS value to convert.

dp jsdouble * Pointer to the JS value that contains the converted double when the function
returns.

Chapter 2, JavaScript API Reference 65

Function Definitions

You can convert a JS value to a number if the JS value to convert is a
JSVAL_INT, JSVAL_DOUBLE, or JSVAL_BOOLEAN. If the JS value is a
JSVAL_STRING that contains numeric values and signs only, conversion also
succeeds. If the JS value is a JSVAL_OBJECT, conversion is successful if the
object supports its own conversion function.

When conversion is successful, JS_ValueToNumber returns JS_TRUE.
Otherwise, it reports an error and returns JS_FALSE.

Note If you know the value to convert will always be an integer, or if you don’t mind
losing the fractional portion of a double value, you can call JS_ValueToInt32
instead of JS_ValueToNumber. Converting a JS value to a double subjects the
resulting double to garbage collection unless you protect against it using a local
root, an object property, or the JS_AddRoot function.

See also JS_ConvertArguments, JS_ConvertValue, JS_ValueToObject,
JS_ValueToFunction, JS_ValueToString, JS_ValueToInt32, JS_ValueToBoolean,
JS_TypeOfValue, JS_GetTypeName, JS_AddRoot

JS_ValueToInt32
Function. Converts a JS value to a JS 32-bit integer.

Syntax JSBool JS_ValueToInt32(JSContext *cx, jsval v, int32 *ip);

Description JS_ValueToInt32 converts a specified JS value, v, to a JS double, and then to
a 32-bit integer, if it fits. The fractional portion of the double is dropped silently
during conversion to an integer value. If the double is out of range,
JS_ValueToInt32 reports an error and conversion fails.

The actual conversion is performed by the object’s convert operation.
Conversion occurs within a specified JS context, cx. The converted value is
stored in the int32 pointed to by ip.

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

v jsval The JS value to convert.

ip int32 * Pointer to the JS value that contains the converted integer when the function
returns.

Function Definitions

66 JavaScript C Engine API Reference

You can convert a JS value to an integer if the JS value to convert is a
JSVAL_INT, JSVAL_DOUBLE, or JSVAL_BOOLEAN. If the JS value is a
JSVAL_STRING that contains numeric values and signs only, conversion also
succeeds. If the JS value is a JSVAL_OBJECT, conversion is successful if the
object supports its own conversion function.

If the conversion is successful, JS_ValueToInt32 returns JS_TRUE. Otherwise,
it reports an error and returns JS_FALSE.

Note If the value to convert may sometimes be a floating point value, and you want
a precise conversion, call JS_ValueToNumber instead of JS_ValueToInt32.
Converting a JS value to a double subjects the resulting double to garbage
collection unless you protect against it using a local root, an object property, or
the JS_AddRoot function.

See also JS_ConvertArguments, JS_ConvertValue, JS_ValueToObject,
JS_ValueToFunction, JS_ValueToString, JS_ValueToNumber,
JS_ValueToBoolean, JS_TypeOfValue, JS_GetTypeName, JS_AddRoot

JS_ValueToECMAInt32
Function. Converts a JS value to an ECMA-compliant 32-bit integer.

Syntax JSBool JS_ValueToECMAInt32(JSContext *cx, jsval v, int32 *ip);

Description JS_ValueToECMAInt32 converts a JS value, v, to a JS double, and then to an
ECMA-standard, 32-bit, signed integer. The fractional portion of the double is
dropped silently during conversion to an integer value. If the double is out of
range, JS_ValueToEMCAInt32 reports an error, and conversion fails. and
returns JS_FALSE. Conversion occurs within a specified JS context, cx.

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

v jsval The JS value to convert.

ip int32 * Pointer to the JS value that contains the converted integer when the function
returns.

Chapter 2, JavaScript API Reference 67

Function Definitions

You can convert a JS value to an integer if the JS value to convert is a
JSVAL_INT, JSVAL_DOUBLE, or JSVAL_BOOLEAN. If the JS value is a
JSVAL_STRING that contains numeric values and signs only, conversion also
succeeds. If the JS value is a JSVAL_OBJECT, conversion is successful if the
object supports its own conversion function.

If the conversion is successful, JS_ValueToECMAInt32 returns JS_TRUE.
Otherwise, it reports an error and returns JS_FALSE.

See also JS_ConvertArguments, JS_ValueToObject, JS_ValueToFunction,
JS_ValueToString, JS_ValueToNumber, JS_ValueToInt32,
JS_ValueToECMAUint32, JS_ValueToUint16, JS_ValueToBoolean, JS_ValueToId

JS_ValueToECMAUint32
Function. Converts a JS value to an ECMA-compliant, unisgned 32-bit integer.

Syntax JSBool JS_ValueToECMAUint32(JSContext *cx, jsval v, uint32 *ip);

Description JS_ValueToECMAUint32 converts a JS value, v, to a JS double, and then to an
ECMA-standard, 32-bit, unsigned integer. The fractional portion of the double is
dropped silently during conversion to an integer value. If the double is out of
range, JS_ValueToEMCAUint32 reports an error, and conversion fails. and
returns JS_FALSE. Conversion occurs within a specified JS context, cx.

You can convert a JS value to an integer if the JS value to convert is a
JSVAL_INT, JSVAL_DOUBLE, or JSVAL_BOOLEAN. If the JS value is a
JSVAL_STRING that contains numeric values and signs only, conversion also
succeeds. If the JS value is a JSVAL_OBJECT, conversion is successful if the
object supports its own conversion function.

If the conversion is successful, JS_ValueToECMAInt32 returns JS_TRUE, and
ip contains a pointer to the converted value. Otherwise, it reports an error and
returns JS_FALSE.

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

v jsval The JS value to convert.

ip uint32 * Pointer to the JS value that contains the converted integer when the function
returns.

Function Definitions

68 JavaScript C Engine API Reference

See also JS_ConvertArguments, JS_ValueToObject, JS_ValueToFunction,
JS_ValueToString, JS_ValueToNumber, JS_ValueToInt32, JS_ValueToECMAInt32,
JS_ValueToUint16, JS_ValueToBoolean, JS_ValueToId

JS_ValueToUint16
Function. Converts a JS value to an unsigned, 16-bit integer.

Syntax JSBool JS_ValueToUint16(JSContext *cx, jsval v, uint16 *ip);

Description JS_ValueToUint16 converts a specified JS value, v, to a JS double, and then to
a 16-bit integer, if it fits. The fractional portion of the double is dropped silently
during conversion to an integer value. If the double is out of range,
JS_ValueToUint16 reports an error and conversion fails. Conversion occurs
within a specified JS context, cx. The converted value is stored in the uint16
pointed to by ip.

You can convert a JS value to an integer if the JS value to convert is a
JSVAL_INT, JSVAL_DOUBLE, or JSVAL_BOOLEAN. If the JS value is a
JSVAL_STRING that contains numeric values and signs only, conversion also
succeeds. If the JS value is a JSVAL_OBJECT, conversion is successful if the
object supports its own conversion function.

If the conversion is successful, JS_ValueToInt32 returns JS_TRUE. Otherwise,
it reports an error and returns JS_FALSE.

See also JS_ConvertArguments, JS_ValueToObject, JS_ValueToFunction,
JS_ValueToString, JS_ValueToNumber, JS_ValueToInt32, JS_ValueToECMAInt32,
JS_ValueToECMAUint32, JS_ValueToBoolean, JS_ValueToId

JS_ValueToBoolean
Function. Converts a JS value to a JS Boolean.

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

v jsval The JS value to convert.

ip uint16 * Pointer to the JS value that contains the converted integer when the function
returns.

Chapter 2, JavaScript API Reference 69

Function Definitions

Syntax JSBool JS_ValueToBoolean(JSContext *cx, jsval v,
JSBool *bp);

Description JS_ValueToBoolean converts a specified JS value, v, to a JS Boolean. The
actual conversion is performed by the object’s convert operation. Converting
any JS value to a Boolean always succeeds, except when the JS value is a
JSVAL_OBJECT that does not support its own conversion routine.

Conversion occurs within a specified JS context, cx. The converted value is
stored in the JSBool pointed to by bp. If the conversion is successful,
JS_ValueToBoolean returns JS_TRUE. If the value to convert is an empty
string, or conversion is unsuccesful, JS_ValueToBoolean returns JS_FALSE.

See also JS_ConvertArguments, JS_ConvertValue, JS_ValueToObject,
JS_ValueToFunction, JS_ValueToString, JS_ValueToNumber, JS_ValueToInt32,
JS_TypeOfValue, JS_GetTypeName

JS_ValueToId
Function. Converts a JS value to a JS ID.

Syntax JSBool JS_ValueToId(JSContext *cx, jsval v, jsid *idp);

Description JS_ValueToId converts a specified JS value, v, to a JS ID. If v already contains
a JS_INT value, idp is set to point at v. Otherwise, JS_ValueToId attempts to
generate an ID value based on the current value of v.

Conversion occurs within a specified JS context, cx. The converted value is
stored in the jsid pointed to by idp. If the conversion is successful,
JS_ValueToId returns JS_TRUE. Otherwise, it returns JS_FALSE.

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

v jsval The JS value to convert.

bp JSBool * Pointer to the JS value that contains the converted Boolean when the function
returns.

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

v jsval The JS value to convert.

idp jsid * Pointer to the JS ID that contains the converted value when the function returns.

Function Definitions

70 JavaScript C Engine API Reference

See also JS_ConvertArguments, JS_ConvertValue, JS_ValueToObject,
JS_ValueToFunction, JS_ValueToString, JS_ValueToNumber, JS_ValueToInt32,
JS_TypeOfValue, JS_GetTypeName, JS_IdToValue

JS_IdToValue
Function. Converts a JS ID to a JS value.

Syntax JSBool JS_IdToValue(JSContext *cx, jsval v,
JSBool *bp);

Description JS_IdToValue converts a specified JS ID, id, to a JS value. Conversion occurs
within a specified JS context, cx. The converted value is stored in the jsval
pointed to by vp. If the conversion is successful, JS_IdToValue returns
JS_TRUE. Otherwise, it returns JS_FALSE.

See also JS_ConvertValue, JS_ValueToObject, JS_ValueToFunction, JS_ValueToString,
JS_ValueToNumber, JS_ValueToInt32, JS_ValueToId, JS_TypeOfValue,
JS_GetTypeName

JS_TypeOfValue
Function. Determines the JS data type of a JS value.

Syntax JSType JS_TypeOfValue(JSContext *cx, jsval v);

Description JS_TypeOfValue examines a specified JS value, v, and returns its JS data type.
Examination occurs within a specified JS context, cx. The return value is always
one of JSTYPE_VOID, JSTYPE_OBJECT, JSTYPE_FUNCTION, JSTYPE_STRING,
JSTYPE_NUMBER, or JSTYPE_BOOLEAN.

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

id jsid The JS ID to convert.

vp jsval * Pointer to the JS value that contains the converted ID when the function returns.

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

v jsval The JS value to examine.

Chapter 2, JavaScript API Reference 71

Function Definitions

See also JS_ConvertValue, JS_ValueToObject, JS_ValueToFunction, JS_ValueToString,
JS_ValueToNumber, JS_ValueToInt32, JS_ValueToBoolean, JS_GetTypeName

JS_GetTypeName
Macro. Function. Returns a pointer to the string literal description of a specified
JS data type.

Syntax const char * JS_GetTypeName(JSContext *cx, JSType type);

Description JS_GetTypeName returns a pointer to a string literal description of a specified
JS data type, type. Testing occurs within a specified JS context, cx. The
following table lists JSTypes and the string literals reported by
JS_GetTypeName:

See also JS_ConvertValue, JS_ValueToObject, JS_ValueToFunction, JS_ValueToString,
JS_ValueToNumber, JS_ValueToInt32, JS_ValueToBoolean, JS_TypeOfValue

JS_Init
Function. Deprecated. Initializes the JavaScript run time.

Syntax JSRuntime * JS_Init(uint32 maxbytes);

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

type JSType The JS value to examine. type is one of JSTYPE_VOID, JSTYPE_OBJECT,
JSTYPE_FUNCTION, JSTYPE_STRING, JSTYPE_NUMBER, or
JSTYPE_BOOLEAN.

Type Literal

JSTYPE_VOID “undefined”

JSTYPE_OBJECT “object”

JSTYPE_FUNCTION “function”

JSTYPE_STRING “string”

JSTYPE_NUMBER “number”

JSTYPE_BOOLEAN “boolean”

Any other value NULL

Function Definitions

72 JavaScript C Engine API Reference

Description JS_Init is a deprecated function that initializes the JavaScript run time
environment. Use JS_NewRuntime instead of this function.

See also JS_NewRuntime, JS_DestroyRuntime

JS_Finish
Function. Deprecated. Frees the JavaScript run time.

Syntax void JS_Finish(JSRuntime *rt);

Description JS_Finish is a deprecated function that frees the specified the JavaScript run
time environment, rt. Use JS_DestroyRuntime instead of this function.

See also JS_DestroyRuntime, JS_NewRuntime

JS_Lock
Function. Locks the JS run-time environment.

Syntax void JS_Lock(JSRuntime *rt);

Description JS_Lock is an empty, API hook function for developers so that they provide an
exclusive locking mechanism for the JS run time on a specific platform or for a
specific application. Developers must create their own locking function that
takes a single argument, rt, the JS run-time environment to lock. Locking the
run time protects critical sections in a threaded environment. After performing
one or more exclusive lock operations, the run time should be unlocked with a
call to JS_Unlock.

See also JS_Unlock, JS_GetRuntime

JS_Unlock
Function. Unlocks a previously locked JS run-time environment.

Syntax void JS_Unlock(JSRuntime *rt);

Chapter 2, JavaScript API Reference 73

Function Definitions

Description JS_Unlock is an empty, API hook function for developers so that they can
provide a mechanism for unlocking the JS run-time environment after having
previously locked it with a call to JS_Lock. Developers must create their own
unlocking function that takes a single argument, rt, the JS run-time
environment to unlock. JS_Unlock must undo the actions taken by the
developer’s implementation of JS_Lock.

See also JS_Lock, JS_GetRuntime

JS_NewContext
Function. Creates a new JavaScript context.

Syntax JSContext * JS_NewContext(JSRuntime *rt, size_t stacksize);

Description JS_NewContext creates a new JavaScript context for an executing script or
thread. Each script or thread is associated with its own context, and each
context must be associated with a specified JS run time, rt. A context specifies
a stack size for the script, the amount, in bytes, of private memory to allocate to
the execution stack for the script.

Generally you use JS_NewContext to generate a context for each separate
script in a HTML page or frame.

Note Once established, a context can be used any number of times for different
scripts or threads so long as it’s only associated with one script or thread at a
time.

If a call to JS_NewContext is successful, it returns a pointer to the new context.
Otherwise it returns NULL.

See also JS_DestroyContext, JS_ContextIterator

Argument Type Description

*rt JSRuntime Pointer to a previously established JS run-time environment with which to
associate this context.

stacksize size_t The size, in bytes, of the execution stack space to allocate for the context.

Function Definitions

74 JavaScript C Engine API Reference

JS_DestroyContext
Function. Frees a specified JS context.

Syntax void JS_DestroyContext(JSContext *cx);

Description JS_DestroyContext frees the stack space allocated to a previously created JS
context, cx.

See also JS_NewContext, JS_ContextIterator

JS_GetRuntime
Function. Retrieves a pointer to the JS run time.

Syntax JSRuntime *) JS_GetRuntime(JSContext *cx);

Description JS_GetRuntime retrieves a pointer to the JS run time with which a specified
script context, cx, is associated. All contexts are associated with a particular JS
run time when they are first created; JS_GetRuntime provides a convenient,
programmatic way to look up the association.

See also JS_Init, JS_Lock, JS_Unlock, JS_NewContext, JS_Finish

JS_ContextIterator
Function. Cycles through the JS contexts associated with a particular JS run
time.

Syntax JSContext * JS_ContextIterator(JSRuntime *rt,
JSContext **iterp);

Argument Type Description

rt JSRuntime * Pointer to a previously established JS run-time environment with which script
contexts to iterate through are associated.

iterp JSContext ** Pointer to a JS context pointer that holds current context when
JS_ContextIterator is called, and that on return holds the next context to
call with a subsequent call to the iterator.

Chapter 2, JavaScript API Reference 75

Function Definitions

Description JS_ContextIterator enables you to cycle through all the executable script
contexts associated with a specified JS run-time environment, rt. Each call to
JS_ContextIterator cycles from the current context to the previous context.

The first time you call JS_ContextIterator, iterp can point to a null-valued
context pointer, or it can point to a known context pointer associated with the
specified run time. If you point iterp at a null-valued context pointer, the
function automatically determines the first executable script context for the run
time, and makes it the “current” context for the function. If you set iterp to a
valid context pointer, that context becomes the “current” context. If the
“current” context matches the starting address of the run time environment’s
context list, then there are no context established, and JS_ContextIterator
returns NULL. Otherwise JS_ContextIterator points iterp to the previous
context pointer in the context chain, and returns that pointer.

In effect, by making repeated calls to JS_ContextIterator you can cycle
through all executable script contexts for a given run time, and perform
common operations on each them.

Example The following code snippet illustrates how to cycle through the contexts for a
given context:

JSContext **cxArray, *acx;
JSContext *iterp = NULL;
int i;

i = 0;
while ((acx = JSContextIterator(rt, &iterp)) != NULL)
{

printf(“%d “. ++1);
}

See also JS_NewContext, JS_DestroyContext

JS_GetVersion
Function. Retrieves the JavaScript version number used within a specified
executable script context.

Syntax JSVersion JS_GetVersion(JSContext *cx);

Description JS_GetVersion reports an encapsulated JavaScript version number used
within a specified context, cx. The version number is an enumerated value that
corresponds to the JavaScript version string with which JS users are familiar.

Function Definitions

76 JavaScript C Engine API Reference

The following table lists possible values reported by JS_GetVersion, the
enumerated value you can use for the JS version in your code, and provides a
translation to the actual JavaScript version string:

If JSVERSION_DEFAULT is returned by JS_GetVersion, it indicates that the
current script does not provide a version number and that the script is executed
using the last known version number. If that version number is unknown
because a script without a specified version is the first to execute,
JS_GetVersion still returns JSVERSION_DEFAULT.

See also JS_SetVersion

JS_SetVersion
Function. Specifies the version of JavaScript used by a specified executable
script context.

Syntax JSVersion JS_SetVersion(JSContext *cx, JSVersion version);

Description JS_SetVersion attempts to set the version of JavaScript to version for a
specified executable script context, cx. version must be one of the following
values:

JS_SetVersion returns the JS version in effect for the context before you
changed it.

Value Enumeration Meaning

100 JSVERSION_1_0 JavaScript 1.0

110 JSVERSION_1_1 JavaScript 1.1

120 JSVERSION_1_2 JavaScript 1.2

130 JSVERSION_1_3 JavaScript 1.3

0 JSVERSION_DEFAULT Default JavaScript version

-1 JSVERSION_UNKNOWN Unknown JavaScript version

Enumeration Meaning

JSVERSION_1_0 JavaScript 1.0

JSVERSION_1_1 JavaScript 1.1

JSVERSION_1_2 JavaScript 1.2

JSVERSION_1_3 JavaScript 1.3

Chapter 2, JavaScript API Reference 77

Function Definitions

See also JS_GetVersion

JS_GetImplementationVersion
Function. Indicates the version number of the JS engine.

Syntax const char * JS_GetImplementationVersion;

Description JS_GetImplementationVersion returns a hard-coded, English language string
that specifies the version number of the JS engine currently in use, and its
release date.

See also JS_GetVersion, JS_SetVersion

JS_GetGlobalObject
Function. Retrieves a pointer to the global JS object for an executable script
context.

Syntax JSObject * JS_GetGlobalObject(JSContext *cx);

Description JS_GetGlobalObject enables you to retrieve a pointer to the global JS object
for a specified context, cx.

See also JS_SetGlobalObject, OBJECT_TO_JSVAL, JSVAL_TO_OBJECT, JS_NewObject,
JS_DefineObject, JS_GetFunctionObject

JS_SetGlobalObject
Function. Specifies the global object for an executable script context.

Syntax void JS_SetGlobalObject(JSContext *cx, JSObject *obj);

Argument Type Description

cx JSContext * Pointer to the executable script context for which to set the global object.

obj JSObject * Pointer to the JS object to set as the global object.

Function Definitions

78 JavaScript C Engine API Reference

Description JS_SetGlobalObject sets the global object to obj for a specified executable
script context, cx. Ordinarily you set a context’s global object when you call
JS_InitStandardClasses to set up the general JS function and object classes
for use by scripts.

See also JS_InitStandardClasses, JS_GetGlobalObject, OBJECT_TO_JSVAL,
JSVAL_TO_OBJECT, JS_NewObject, JS_DefineObject, JS_GetFunctionObject

JS_InitStandardClasses
Function. Initializes general JS function and object classes, and the built-in
object classes used in most scripts.

Syntax JSBool JS_InitStandardClasses(JSContext *cx, JSObject *obj);

Description JS_InitStandardClasses initializes general JS function and object classes,
and the built-in object classes used in most scripts. The appropriate
constructors for these objects are created in the scope defined for obj. Always
call JS_InitStandardClasses before executing scripts that make use of JS
objects, functions, and built-in objects.

As a side effect, JS_InitStandardClasses uses obj to establish a global
object for the specified executable context, cx, if one is not already established.

JS_InitStandardClasses also initializes the general JS function and object
classes. Initializing the function class enables building of constructors.
Initializing the object classes enables the <object>.<prototype> syntax to
work in JavaScript.

Finally, JS_InitStandardClasses initializes the built-in JS objects (Array,
Boolean, Date, Math, Number, and String) used by most scripts.

See also JS_InitClass, JS_GetClass

JS_GetScopeChain

Argument Type Description

cx JSContext * Pointer to the executable script context for which to initialize JS function and
object classes.

obj JSObject * Pointer to a JS object to set as the global object.

Chapter 2, JavaScript API Reference 79

Function Definitions

Function. Retrieves the scope chain for a given executable script context.

Syntax JSObject * JS_GetScopeChain(JSContext *cx);

Description JS_GetScopeChain retrieves the scope chain for the currently executing (or
“active”) script or function in a given context, cx. The scope chain provides a
way for JavaScript to resolve unqualified property and variable references. The
scope chain can store reference qualifications, so that future lookups are faster.

See also JS_InitStandardClasses

JS_malloc
Function. Allocates a region of memory for use.

Syntax void * JS_malloc(JSContext *cx, size_t nbytes);

Description JS_malloc allocates a region of memory nbytes in size. If the allocation is
successful, JS_malloc returns a pointer to the beginning of the region.

If the memory cannot be allocated, JS_malloc passes cx to
JS_ReportOutOfMemory to report the error, and returns a null pointer.

As with a standard C call to malloc, the region of memory allocated by this call
is uninitialized and should be assumed to contain meaningless information.

Note Currently JS_malloc is a wrapper on the standard C malloc call. Do not make
assumptions based on this underlying reliance. Future versions of JS_malloc
may be implemented in a different manner.

See also JS_realloc, JS_free, JS_ReportOutOfMemory

JS_realloc
Function. Reallocates a region of memory.

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

nbytes size_t Amount of space, in bytes, to allocate.

Function Definitions

80 JavaScript C Engine API Reference

Syntax void * JS_realloc(JSContext *cx, void *p, size_t nbytes);

Description JS_realloc reallocates a region of memory, while preserving its contents.
Typically you call JS_realloc because you need to allocate more memory
than orginally allocated with a call to JS_malloc, but it can also be called to
decrease the amount of allocated memory, and even to deallocate the memory
region entirely. p is a pointer to the previously allocated memory region, and
nbytes is the size, in bytes, of the region to allocate.

Note Currently JS_realloc is a wrapper on the standard C realloc call. Do not
make assumptions based on this underlying reliance. Future versions of
JS_realloc may be implemented in a different manner.

If p is null, then JS_realloc behaves like JS_malloc. If p is not null, and
nbytes is 0, JS_realloc returns null and the region is deallocated. If nbytes
is less than the originally allocated size, then some of the current contents of
memory at the end of the existing region are discarded. If nbytes is greater
than the originally allocated size, the additional space is appended to the end.
As with JS_malloc, new space is not initialized and should be regarded to
contain meaningless information.

If a reallocation request fails, JS_realloc passes cx to
JS_ReportOutOfMemory to report the error.

Note Whenever the pointer returned by JS_realloc differs from p, assume that the
old region of memory is deallocated and should not be used.

See also JS_malloc, JS_free, JS_ReportOutOfMemory

JS_free
Function. Deallocates a region of memory.

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

p void * Pointer to the previously allocated memory

nbytes size_t Amount of space, in bytes, to reallocate.

Chapter 2, JavaScript API Reference 81

Function Definitions

Syntax void JS_free(JSContext *cx, void *p);

Description JS_free deallocates a region of memory allocated by previous calls to
JS_malloc and JS_realloc. If p is null, JS_free does nothing. Once memory is
freed, it should not be used by your application.

Note Currently JS_free is a wrapper on the standard C free call. Do not make
assumptions based on this underlying reliance. Future versions of JS_free may
be implemented in a different manner.

See also JS_malloc, JS_realloc

JS_strdup
Function. Duplicates a specified string within a specific JS executable script
context.

Syntax char * JS_strdup(JSContext *cx, const char *s);

Description JS_strdup duplicates a specified string, s, within a specified context, cx. To
duplicate the string, JS_strdup allocates space from the malloc heap for the a
copy of the string, and then copies s to the newly allocated location. If the
allocation fails, JS_strdup returns a null pointer. Otherwise, it returns a
pointer to the duplicate string.

See also JS_NewDouble

JS_NewDouble
Function. Creates a new double value.

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

p void * Pointer to the previously allocated memory

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

s char * Pointer to an existing string to duplicate.

Function Definitions

82 JavaScript C Engine API Reference

Syntax jsdouble * JS_NewDouble(JSContext *cx, jsdouble d);

Description JS_NewDouble creates a copy of a JS double, d, for a given executable script
context, cx. Space for the new value is allocated from the JS garbage collection
heap.

If the duplication is successful, JS_NewDouble returns a pointer to the copy of
the double. Otherwise it returns NULL.

Note After you create it, a JS double is subject to garbage collection until you protect
against it using a local root, an object property, or the JS_AddRoot function.

See also JS_strdup, JS_NewDoubleValue, JS_NewNumberValue, JS_AddRoot

JS_NewDoubleValue
Function. Creates a JS value based on a JS double.

Syntax JSBool JS_NewDoubleValue(JSContext *cx, jsdouble d,
jsval *rval);

Description JS_NewDoubleValue creates a jsval containing a double value that
corresponds to the double passed in as an argument. cx is the executable script
context in which this call is made. d is the double value to assign to the jsval,
and rval is the jsval into which the new JS double value is stored. Space for
the new value is allocated from the JS garbage collection heap.

JS_NewDoubleValue attempts to creates a temporary copy of the double value.
If the copy is successful, then the jsval is created, and the function returns
JS_TRUE.Otherwise it returns JS_FALSE.

Note After you create it, a JS double is subject to garbage collection until you protect
against it using a local root, an object property, or the JS_AddRoot function.

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

d jsdouble An existing double value to duplicate.

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

d jsdouble An existing double to assign as a value to the jsval.

rval jsval * Pointer to a previously declared jsval into which to store the double value.

Chapter 2, JavaScript API Reference 83

Function Definitions

See also JS_NewNumberValue, JS_AddRoot

JS_NewNumberValue
Function. Internal use only. Summary fragment.

Syntax JSBool JS_NewNumberValue(JSContext *cx, jsdouble d,
jsval *rval);

Description JS_NewNumberValue creates a jsval containing a numeric value that
corresponds to the double passed in as an argument. cx is the executable script
context in which this call is made. d is the numeric value to assign to the
jsval, and rval is the jsval into which the new JS numeric value is stored.
Space for the new value is allocated from the JS garbage collection heap.

JS_NewNumberValue attempts to creates a temporary copy of the double value.
First it copies the value into an integer variable and compares the double and
integer values. If they match, then JS_NewNumber converts the integer to a JS
value. If they do not match, JS_NewNumber calls JS_NewDouble to create a JS
value containing the value of the original double. If the creation of the JS value
is successful, the function returns JS_TRUE. Otherwise it returns JS_FALSE.

Note If JS_NewNumberValue creates a double, be aware that it is subject to garbage
collection unless you protect against it using a local root, an object property, or
the JS_AddRoot function.

See also JS_NewDoubleValue, JS_AddRoot

JS_AddRoot
Function. Adds a garbage collection hash table entry for a specified JS item to
protect it from garbage collection.

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

d jsdouble An existing double to assign as a value to the jsval.

rval jsval * Pointer to a previously declared jsval into which to store the double value.

Function Definitions

84 JavaScript C Engine API Reference

Syntax JSBool JS_AddRoot(JSContext *cx, void *rp);

Description JS_AddRoot protects a specified item, rp, from garbage collection. rp is a
pointer to the data for a JS double, string, or object. An entry for the item is
entered in the garbage collection hash table for the specified executable script
context, cx.

If the root item is an object, then its associated properties are automatically
protected from garbage collection, too.

Note You should only use JS_AddRoot to root JS objects, JS strings, or JS doubles,
and then only if they are derived from calls to their respective JS_NewXXX
creation functions.

If the entry in the hash table is successfully created, JS_AddRoot returns
JS_TRUE. Otherwise it reports a memory error and returns JS_FALSE.

See also JS_AddNamedRoot, JS_DumpNamedRoots, JS_RemoveRoot

JS_AddNamedRoot
Function. Adds a garbage collection hash table entry for a named JS item to
protect it from garbage collection.

Syntax JSBool JS_AddNamedRoot(JSContext *cx, void *rp,
const char *name);

Description JS_AddNamedRoot protects a specified item, rp, from garbage collection. rp is
a pointer to the data for a JS double, string, or object. name is the name to
assign to this protected item. An entry for the item is entered in the garbage
collection hash table for the specified executable script context, cx.

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

rp void * Pointer to the item to protect.

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

rp void * Pointer to the item to protect.

name char * Name of the item to protect

Chapter 2, JavaScript API Reference 85

Function Definitions

If the root item is an object, then its associated properties are automatically
protected from garbage collection, too.

Note You should only use JS_AddNamedRoot to root JS objects, JS strings, or JS
doubles, and then only if they are derived from calls to their respective
JS_NewXXX creation functions.

If the entry in the hash table is successfully created, JS_AddNamedRoot returns
JS_TRUE. Otherwise it reports a memory error and returns JS_FALSE.

See also JS_AddRoot, JS_DumpNamedRoots, JS_RemoveRoot

JS_DumpNamedRoots
Function. Enumerates the named roots in the garbage collection hash table.

Syntax void JS_DumpNamedRoots(JSRuntime *rt,
void (*dump)(const char *name, void *rp, void *data),
void *data);

Description JS_DumpNamedRoots retrieves information from the garbage collection hash
table about the named roots associated with a specific JS run time, rt.

dump is the name of the function that actually retrieves the information from the
hash table. If you pass a null pointer for this argument, the JS engine defaults to
using an internal retrieval function. If you write your own dump function to
replace the internal engine function, note that the function you write must
accept the following arguments, in order:

Argument Type Description

rt JSRuntime * Pointer to a JS run time from which to dump named roots

dump void * Pointer to function that actually dumps the named roots

data void * Pointer to a storage area into which to put a root’s data.

Argument Type Description

name const char *Name of the current hash entry.

rp void * Pointer to the named roots

data void * Pointer to a storage area into which to put a root’s data.

Function Definitions

86 JavaScript C Engine API Reference

data is a pointer to the storage structure into which to return retrieved
information. If you pass a null pointer for this argument the JS engine defaults
to using an internal storage structure for this information. If you write your own
dump function, data must be the same as the last argument passed to the dump
function.

See also JS_AddRoot, JS_AddNamedRoot, JS_RemoveRoot

JS_RemoveRoot
Function. Removes a garbage collection hash table entry for a specified JS item
to enable it to be garbage collected.

Syntax JSBool JS_RemoveRoot(JSContext *cx, void *rp);

Description JS_RemoveRoot removes an entry for a a specified item, rp, from the garbage
collection hash table. When an item is removed from the hash table, it can be
garbage collected. rp is a pointer to a JS double, string, or object. An entry for
the item is removed in the garbage collection hash table for the specified
executable script context, cx.

JS_RemoveRoot always returns JS_TRUE.

See also JS_AddRoot, JS_AddNamedRoot, JS_DumpNamedRoots

JS_BeginRequest
Function. Indicates to the JS engine that the application is starting a thread.

Syntax void JSBeginRequest(JSContext cx*);

Description When your application start a new thread, JS_BeginRequest safely increments
the thread counter for the JS engine run time associated with a given context,
cx. In order to increment the counter, this function first checks that garbage
collection is not in process. If it is, JS_BeginRequest waits until garbage

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

rp void * Pointer to the item to remove from the hash table.

Chapter 2, JavaScript API Reference 87

Function Definitions

collection is complete before locking the JS engine run time and incrementing
the thread counter. After incrementing the counter, JS_BeginRequest unlocks
the run time if it previously locked it.

Note JS_BeginRequest is only available if you compile the JS engine with
JS_THREADSAFE defined. In a default engine compilation, JS_THREADSAFE is
undefined.

See also JS_EndRequest, JS_SuspendRequest, JS_ResumeRequest

JS_EndRequest
Function. Indicates to the JS engine that the application no longer requires a
thread.

Syntax void JS_EndRequest(JSContext *cx);

Description When your application no longer requires a thread, JS_EndRequest safely
decrements the thread counter for the JS engine run time associated with a
given context, cx. If decrementing the counter reduces it to zero,
JS_EndRequest locks the run time and notifies the garbage collector so that
values no longer in use can be cleaned up. To avoid garbage collection
notification, call JS_SuspendRequest instead of JS_EndRequest.

Note JS_EndRequest is only available if you compile the JS engine with
JS_THREADSAFE defined. In a default engine compilation, JS_THREADSAFE is
undefined.

See also JS_BeginRequest, JS_SuspendRequest, JS_ResumeRequest

JS_SuspendRequest
Function. Indicates to the JS engine that the application is temporarily
suspending a thread.

Syntax void JS_SuspendRequest(JSContext *cx);

Description When your application suspends use of a thread, JS_SuspendRequest safely
decrements the thread counter for the JS engine run time associated with a
given context, cx.

Function Definitions

88 JavaScript C Engine API Reference

Note JS_SuspendRequest is only available if you compile the JS engine with
JS_THREADSAFE defined. In a default engine compilation, JS_THREADSAFE is
undefined.

See also JS_BeginRequest, JS_EndRequest, JS_ResumeRequest

JS_ResumeRequest
Function. Restarts a previously suspended thread.

Syntax void JSBResumeRequest(JSContext cx*);

Description When your application restart a previously suspended thread,
JS_BeginRequest safely increments the thread counter for the JS engine run
time associated with a given context, cx. In order to increment the counter, this
function first checks that garbage collection is not in process. If it is,
JS_ResumeRequest waits until garbage collection is complete before locking
the JS engine run time and incrementing the thread counter. After incrementing
the counter, JS_ResumeRequest unlocks the run time if it previously locked it.

Note JS_ResumeRequest is only available if you compile the JS engine with
JS_THREADSAFE defined. In a default engine compilation, JS_THREADSAFE is
undefined.

See also JS_BeginRequest, JS_EndRequest, JS_SuspendRequest

JS_LockGCThing
Deprecated function. Protects a specified JS item from garbage collection.

Syntax JSBool JS_LockGCThing(JSContext *cx, void *thing);

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

thing void * Pointer to the item to protect.

Chapter 2, JavaScript API Reference 89

Function Definitions

Description JS_LockGCThing is a deprecated function that protects a specified item, thing,
associated with an executable script context, cx, from garbage collection.
thing is a JS double, string, or object. This function is available only for
backward compatibility with existing applications. Use JS_AddRoot instead of
this function.

See also JS_UnlockGCThing, JS_AddRoot

JS_UnlockGCThing
Deprecated function. Reenables garbage collection of a specified JS item.

Syntax JSBool JS_UnockGCThing(JSContext *cx, void *thing);

Description JS_LockGCThing removes a lock from a specified item, thing, enabling it to
be garbage collected. Unlocking occurs within a specified executable script
context, cx. thing is a JS double, string, or object.This function is available
only for backward compatibility with existing applications. Use
JS_RemoveRoot instead.

See also JS_LockGCThing, JS_RemoveRoot

JS_GC
Function. Performs garbage collection in the JS memory pool.

Syntax void JS_GC(JSContext *cx);

Description JS_GC performs garbage collection, if necessary, of JS objects, doubles, and
strings that are no longer needed by a script executing in a specified context,
cx. Garbage collection frees space in the memory pool so that it can be reused
by the JS engine.

When you use JS_malloc and JS_realloc to allocate memory for executable
script contexts, these routines automatically invoke the garbage collection
routine.

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

thing void * Pointer to the item to unlock.

Function Definitions

90 JavaScript C Engine API Reference

When your scripts create many objects, you may want to call JS_GC directly in
your code, particularly when request ends or a script terminates. To run
garbage collection only when a certain amount of memory has been allocated,
you can call JS_MaybeGC instead of JS_GC.

See also JS_malloc, JS_realloc, JS_MaybeGC

JS_MaybeGC
Function. Invokes conditional garbage collection on the JS memory pool.

Syntax void JS_MaybeGC(JSContext *cx);

Description JS_MaybeGC performs a conditional garbage collection of JS objects, doubles,
and strings that are no longer needed by a script executing in a specified
context, cx. This function checks that about 75% of available space has already
been allocated to objects before peforming garbage collection. To force
garbage collection regardless of the amount of allocated space, call JS_GC
instead of JS_MaybeGC.

See also JS_malloc, JS_realloc, JS_GC

JS_SetGCCallback
Function. Specifies a new callback function for the garbage collector.

Syntax JSGCCallback JS_SetGCCallback(JSContext *cx, JSGCCallback cb);

Description JS_SetGCCallback enables you to specify the function is called by the
garbage collector to return control to the calling program when garbage
collection is complete. cx is the context in which you specify the callback. cb is
a pointer to the new callback function to use.

JS_SetGCCallback returns a pointer to the previously used callback function
upon completion. Your application should store this return value in order to
restore the original callback when the new callback is no longer needed.

To restore the original callback, simply call JS_SetGCCallback a second time,
and pass the old callback in as the cb argument.

See also JS_SetBranchCallback

Chapter 2, JavaScript API Reference 91

Function Definitions

JS_DestroyIdArray
Function. Frees a JS ID array structure.

Syntax void JS_DestroyIdArray(JSContext *cx, JSIdArray *ida);

Description JS_DestroyIdArray frees the JS ID array structure pointed to by ida. cx is the
context in which the freeing of the array takes place.

See also JS_NewIdArray, JSIdArray

JS_NewIdArray
Function. Creates a new JS ID array structure.

Syntax JSIdArray JS_NewIdArray(JSContext *cx);

Description JS_NewIdArray allocates memory for a new JS ID array structure. On success,
it returns a pointer to the newly allocated structure. Otherwise it returns NULL.

See also JS_DestroyIdArray, JSIdArray

JS_PropertyStub
Function. Provides a dummy property argument for API routines that requires
property information.

Syntax JSBool JS_PropertyStub(JSContext *cx, JSObject *obj, jsval id,
jsval *vp);

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

obj JSObject * Pointer to the object for this stub.

id jsval The ID for the stub.

vp jsval * Pointer to a jsval for the stub.

Function Definitions

92 JavaScript C Engine API Reference

Description JS_PropertyStub provides a convenient way to pass a property to an API
function that requires one without requiring you to create an actual property
definition. This is especially useful for internal operations, such as class
definitions. A property stub is a place holder for an actual property assignment
function.

As designed, JS_PropertyStub does not use the arguments you pass to it, and
simply returns JS_TRUE.

See also JS_EnumerateStub, JS_ResolveStub, JS_ConvertStub, JS_FinalizeStub

JS_EnumerateStub
Function. Provides a dummy enumeration object for API routines that requires
it.

Syntax JSBool JS_EnumerateStub(JSContext *cx, JSObject *obj);

Description JS_EnumerateStub provides a convenient way to pass an enumeration object
to an API function that requires one without requiring you to create an actual
enumeration object. This is especially useful for internal operations, such as
class definitions. An enumeration stub is a placeholder for an actual
enumeration function.

As designed, JS_EnumerationStub does not use the arguments you pass to it,
and simply returns JS_TRUE.

See also JS_PropertyStub, JS_ResolveStub, JS_ConvertStub, JS_FinalizeStub

JS_ResolveStub
Function. Provides a dummy resolution object for API routines that requires it.

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

obj JSObject * Pointer to the object for this stub.

Chapter 2, JavaScript API Reference 93

Function Definitions

Syntax JSBool JS_ResolveStub(JSContext *cx, JSObject *obj, jsval id);

Description JS_ResolveStub provides a convenient way to pass a resolution object to an
API function that requires one without requiring you to create an actual
resolution object. This is especially useful for internal operations, such as class
definitions. A resolution stub is a placeholder for an actual resolution
assignment function.

As designed, JS_ResolveStub does not use the arguments you pass to it, and
simply returns JS_TRUE.

See also JS_PropertyStub, JS_EnumerateStub, JS_ConvertStub, JS_FinalizeStub

JS_ConvertStub
Function. Provides a dummy conversion object for API routines that requires it.

Syntax JSBool JS_ConvertStub(JSContext *cx, JSObject *obj, JSType type,
jsval *vp);

Description JS_ConvertStub provides a convenient way to pass a conversion object to an
API function that requires one without requiring you to create an actual
conversion object. This is especially useful for internal operations, such as class
definitions. A conversion stub is a placeholder for an actual conversion
function.

As designed, JS_ConvertStub does not use the arguments you pass to it, and
simply returns JS_TRUE.

See also JS_PropertyStub, JS_EnumerateStub, JS_ResolveStub, JS_FinalizeStub

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

obj JSObject * Pointer to the object for this stub.

id jsval The ID for the stub.

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

obj JSObject * Pointer to the object for this stub.

type JSType The type to which to convert this object.

vp jsval * Pointer to the JS value in which to store the conversion.

Function Definitions

94 JavaScript C Engine API Reference

JS_FinalizeStub
Function. Provides a dummy finalization object for API routines that requires it.

Syntax void JS_FinalizeStub(JSContext *cx, JSObject *obj);

Description JS_FinalizeStub provides a convenient way to pass a finalization object to an
API function that requires one without requiring you to create an actual
finalization object. This is especially useful for internal operations, such as class
definitions. A conversion stub is a placeholder for an actual finalization
function.

As designed, JS_FinalizeStub does not use the arguments you pass to it, and
simply returns JS_TRUE.

See also JS_PropertyStub, JS_EnumerateStub, JS_ResolveStub, JS_ConvertStub

JS_InitClass
Function. Initializes a class structure, its prototype, properties, and functions.

Syntax JSObject * JS_InitClass(JSContext *cx, JSObject *obj,
JSObject *parent_proto, JSClass *clasp,
JSNative constructor, uintN nargs, JSPropertySpec *ps,
JSFunctionSpec *fs, JSPropertySpec *static_ps,
JSFunctionSpec *static_fs);

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

obj JSObject * Pointer to the object for this stub.

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

obj JSObject * Pointer to the object to use for initializing the class.

parent_proto JSObject * Pointer to a prototype object for the class.

clasp JSClass * Pointer to the class structure to initialize. This structure defines the
class for use by other API functions.

constructor JSNative The constructor for the class. Its scope matches that of the obj
argument. If constructor is NULL, then static_ps and
static_fs are also NULL.

Chapter 2, JavaScript API Reference 95

Function Definitions

Description JS_InitClass builds a class structure, its object constructor, its prototype, its
properties, and its methods. A class is an internal JS structure that is not
exposed outside the JS engine. You can use a class, its properties, methods,
and prototypes to build other objects that are exposed outside the engine.

JS_InitClass returns a pointer to a JS object that represents the newly created
class. If JS_InitClass fails, then the pointer returned is NULL.

A class is comprised of a class structure, a constructor, a prototype object, and
properties and functions. The class structure specifies the name of the class, its
flags, and its property functions. These include functions for adding and
deleting properties, getting and setting property values, and enumerating
converting, resolving, and finalizing its properties.

The constructor for the class is built in the same context as cx, and in the same
scope as obj. If you pass NULL to JS_InitClass, then a constructor is not
built, and you cannot specify static properties and functions for the class.

If you provide a constructor for the class, then you should also pass an object
to parent_proto. JS_InitClass uses parent_proto to build a prototype
accessor object for the class. The accessor object is modeled on the prototype
object you provide. If the accessor object is successfully created,
JS_InitClass returns a pointer to the JS object. Otherwise it returns NULL,
indicating failure to create the accessor object, and therefore failure to create
the class itself.

After building the constructor and prototype, JS_InitClass adds the
properties and methods of the constructor and prototype, if any, to the class
definition. Properties and methods are either “dynamic,” based on the
properties and methods of the prototype object, or “static,” based on the
properties and methods of the constructor.

nargs uintN Number of arguments for the constructor.

ps JSPropertySpec * Pointer to the properties structure for the prototype object,
parent_proto.

fs JSFunctionSpec * Pointer to the functions structure for the prototype object,
parent_proto.

static_ps JSPropertySpec * Pointer to the properties structure for the constructor object, if it is
not NULL.

static_fs JSFunctionSpec * Pointer to the functions structure for the constructor object, if it is
not NULL.

Function Definitions

96 JavaScript C Engine API Reference

See also JS_GetClass, JS_InstanceOf, JSClass, JSPropertySpec, JSFunctionSpec

JS_GetClass
Function. Retrieves the class associated with an object.

Syntax JSClass * JS_GetClass(JSObject *obj);

Alternative syntax when JS_THREADSAFE is defined in a multithreaded
environment:

JSClass * JS_GetClass(JSContext *cx, JSObject *obj)

Description JS_GetClass returns a pointer to the class associated with a specified JS object,
obj. The class is an internal JS data structure that you can create for objects as
needed. Generally you do not expose a class in your applications, but use it
behind the scenes.

If your application runs in a multithreaded environment, define
JS_THREADSAFE, and pass a thread context as the first argument to
JS_GetClass.

If an object has a class, JS_GetClass returns a pointer to the class structure.
Otherwise, it returns NULL.

See also JS_InitClass, JS_InstanceOf, JSClass

JS_InstanceOf
Function. Determines if an object is an instance of a specified JS class.

Syntax JSBool JS_InstanceOf(JSContext *cx, JSObject *obj,
JSClass *clasp, jsval *argv);

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

obj JSObject * Object to test.

clasp JSClass * Class against which to test the object.

argv jsval * Optional argument vector. If you do not want to pass an argument vector, pass
NULL for this argument.

Chapter 2, JavaScript API Reference 97

Function Definitions

Description JS_InstanceOf determines if a specified JS object, obj, has a JS class struct,
clasp. If the object’s internal class pointer corresponds to clasp, this function
returns JS_TRUE, indicating that the object is an instance of the class.
Otherwise, JS_InstanceOf returns JS_FALSE.

If you pass a non-null argument vector, argv, to JS_InstanceOf, and obj is
not an instance of clasp, this function may report a function mismatch before
returning. To do so, JS_InstanceOf tests whether or not there is a function
name associated with the argument vector, and if there is, reports the name in
an error message using the JS_ReportError function.

See also JS_InitClass, JS_GetClass, JSClass

JS_GetPrivate
Function. Retrieves the private data associated with an object.

Syntax void * JS_GetPrivate(JSContext *cx, JSObject *obj);

Description JS_GetPrivate retrieves the private data associated with a specified object,
obj. To retrieve private data, an object must be an instance of a class, and that
class must include the JSCLASS_HAS_PRIVATE flag.

If successful, JS_GetPrivate returns a pointer to the private data. Otherwise it
returns NULL which can mean either that there is no private data currently
associated with the object, or that the object cannot have private data.

See also JSVAL_TO_PRIVATE, JSCLASS_HAS_PRIVATE, JS_InitClass, JS_SetPrivate,
JS_GetInstancePrivate, JSClass

JS_SetPrivate
Function. Sets the private data for a JS object.

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

obj JSObject * Object for which to retrieve private data.

Function Definitions

98 JavaScript C Engine API Reference

Syntax JSBool JS_SetPrivate(JSContext *cx, JSObject *obj, void *data);

Description JS_SetPrivate sets the private data pointer for a specified object, obj. To set
private data for an object, the object must be an instance of a class, and the
class must include JSCLASS_HAS_PRIVATE in its flag set.

Only a pointer to data is stored with the object. The data pointer is converted to
a jsval for storage purposes. You must free this pointer in your finalization code
if you allocated storage for it. It is up to your application to maintain the actual
data.

If successful, JS_SetPrivate returns JS_TRUE. Otherwise it returns JS_FALSE.

See also PRIVATE_TO_JSVAL, JSCLASS_HAS_PRIVATE, JS_InitClass, JS_GetPrivate,
JS_GetInstancePrivate, JSClass

JS_GetContextPrivate
Function. Retrieves the private data associated with a context.

Syntax void * JS_GetContextPrivate(JSContext *cx);

Description JS_GetContextPrivate retrieves the private data associated with a specified
context, cx. If successful, JS_GetContextPrivate returns a pointer to the
private data. Otherwise it returns NULL which means that there is no private
data currently associated with the context.

See also JS_SetContextPrivate

JS_SetContextPrivate
Function. Sets the private data for a context.

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

obj JSObject * Object for which to set private data.

data void * Private data for the object.

Argument Type Description

cx JSContext * Pointer to a JS context for which to retrieve data.

Chapter 2, JavaScript API Reference 99

Function Definitions

Syntax JSBool JS_SetContextPrivate(JSContext *cx, void *pdata);

Description JS_SetContextPrivate sets the private data pointer for a specified context,
cx.

Only a pointer to data is stored with the context. The data pointer is converted
to a jsval for storage purposes. You must free this pointer in your finalization
code if you allocated storage for it. It is up to your application to maintain the
actual data.

See also JS_GetContextPrivate

JS_GetInstancePrivate
Function. Retrieves the private data associated with an object if that object is an
instance of a class.

Syntax void * JS_GetInstancePrivate(JSContext *cx, JSObject *obj,
JSClass *clasp, jsval *argv);

Description JS_GetInstancePrivate determines if a specified JS object, obj, is an
instance of a JS class, clasp, and if it is, returns a pointer to the object’s private
data. If the object’s internal class pointer corresponds to clasp, and you do not
also pass an optional argument vector, argv, this function attempts to retrieve a
pointer to the private data. Otherwise, it returns NULL.

Argument Type Description

cx JSContext * Pointer to a JS context for which to set private data.

pdata void * Pointer to the private data for the context.

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

obj JSObject * Object for which to retrieve private data.

clasp JSClass * Class against which to test the object.

argv jsval * Optional argument vector. If you do not want to pass an argument vector, pass
NULL for this argument.

Function Definitions

100 JavaScript C Engine API Reference

If you pass a non-null argument vector, argv, to JS_GetInstancePrivate,
and obj is not an instance of clasp, this function reports a function mismatch
before returning NULL. In this case, JS_GetInstancePrivate tests whether or
not there is a function name associated with the argument vector, and if there
is, reports the name in an error message using the JS_ReportError function.

Note If obj is an instance of clasp, but there is no private data currently associated
with the object, or the object cannot have private data,
JS_GetInstancePrivate also returns NULL.

See also JSVAL_TO_PRIVATE, JSCLASS_HAS_PRIVATE, JS_InitClass, JS_InstanceOf,
JS_GetPrivate, JS_SetPrivate, JSClass

JS_GetPrototype
Function. Retrieves an object’s prototype.

Syntax JSObject * JS_GetPrototype(JSContext *cx, JSObject *obj);

Description JS_GetPrototype retrieves the prototype object for a specified object, obj. A
prototype object provides properties shared by similar JS objects.

If an object has a prototype, JS_GetPrototype returns a pointer to the
prototype. If the object does not have a prototype, or the object finalize
function is active, JS_GetPrototype returns NULL.

See also JS_SetPrototype

JS_SetPrototype
Function. Sets the prototype for an object.

Syntax JSBool JS_SetPrototype(JSContext *cx, JSObject *obj,

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

obj JSObject * Object for which to retrieve the prototype.

Chapter 2, JavaScript API Reference 101

Function Definitions

JSObject *proto);

Description JS_SetPrototype enables you to set the prototype object for a specified
object. A prototype object provides properties that are shared by similar JS
object instances. Ordinarily you set a prototype for an object when you create
the object with JS_NewObject, but if you do not set a prototype at that time,
you can later call JS_SetPrototype to do so.

obj is a pointer to an existing JS object, and proto is a pointer to second
existing object upon which the first object is based.

Note Take care not to create a circularly-linked list of prototypes using this function,
because such a set of prototypes cannot be resolved by the JS engine.

If JS_SetPrototype is successful, it returns JS_TRUE. Otherwise, if it cannot
create and fill a prototype slot for the object, it returns JS_FALSE.

See also JS_GetPrototype, JS_NewObject

JS_GetParent
Function. Retrieves the parent object for a specified object.

Syntax JSObject * JS_GetParent(JSContext *cx, JSObject *obj);

Description JS_GetParent retrieves the parent object for a specified object, obj. If an
object has a parent, JS_GetParent returns a pointer to the parent object. If the
object does not have a parent, or the object finalize function is active,
JS_GetParent returns NULL.

See also JS_SetParent, JS_GetConstructor

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

obj JSObject * Pointer to the object for which to set the prototype.

proto JSObject * Pointer to the prototype to use.

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

obj JSObject * Object for which to retrieve the parent.

Function Definitions

102 JavaScript C Engine API Reference

JS_SetParent
Function. Sets the parent for an object.

Syntax JSBool JS_SetParent(JSContext *cx, JSObject *obj,
JSObject *parent);

Description JS_SetParent enables you to set the parent object for a specified object. A
parent object is part of the enclosing scope chain for an object. Ordinarily you
set a parent for an object when you create the object with JS_NewObject, but
if you do not set a parent at that time, you can later call JS_SetParent to do
so.

obj is a pointer to an existing JS object, and parent is a pointer to a second
existing object of which the first object is a child. If JS_SetParent is
successful, it returns JS_TRUE. Otherwise, if it cannot create and fill a parent
slot for the object, it returns JS_FALSE.

See also JS_GetParent, JS_GetConstructor, JS_NewObject

JS_GetConstructor
Function. Retrieves the constructor for an object.

Syntax JSObject * JS_GetConstructor(JSContext *cx, JSObject *proto);

Description JS_GetConstructor retrieves the constructor for a specified object, proto.
The constructor is a function that builds the object. If successful,
JS_GetConstructor returns a pointer to the constructor object.

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

obj JSObject * Pointer to the object for which to set the parent.

parent JSObject * Pointer to the parent object to use.

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

proto JSObject * Pointer to the object for which to retrieve a constructor.

Chapter 2, JavaScript API Reference 103

Function Definitions

If proto does not have any properties, JS_GetConstructor returns NULL. If
proto has properties, but it does not have an associated constructor function,
JS_GetConstructor reports the lack of a constructor function and then returns
NULL.

See also JS_GetParent, JS_GetPrototype

JS_NewObject
Function. Instantiates a new object.

Syntax JSObject * JS_NewObject(JSContext *cx, JSClass *clasp,
JSObject *proto, JSObject *parent);

Description JS_NewObject instantiates a new object based on a specified class, prototype,
and parent object. cx is a pointer to a context associated with the run time in
which to establish the new object. clasp is a pointer to an existing class to use
for internal methods, such as finalize. proto is an optional pointer to the
prototype object with which to associate the new object.

Set proto to NULL to force JS to assign a prototype object for you. In this case,
JS_NewObject attempts to assign the new object the prototype object
belonging to clasp, if one is defined there. Otherwise, it creates an empty object
stub for the prototype.

parent is an optional pointer to an existing object to which to set the new
object’s parent object property. You can set parent to NULL if you do not want
to set the parent property.

On success, JS_NewObject returns a pointer to the newly instantiated object.
Otherwise it returns NULL.

Note To create a new object that is a property of an existing object, use
JS_DefineObject.

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

clasp JSClass * Pointer to the class to use for the new object.

proto JSObject * Pointer to the prototype object to use for the new class.

parent JSObject * Pointer to which to set the new object’s __parent__ property.

Function Definitions

104 JavaScript C Engine API Reference

See also JS_ConstructObject,, JS_DefineObject, JS_ValueToObject, JS_NewArrayObject,
JS_GetFunctionObject

JS_ConstructObject
Function. Instantiates a new object and invokes its constructor.

Syntax JSObject * JS_ConstructObject(JSContext *cx, JSClass *clasp,
JSObject *proto, JSObject *parent);

Description JS_ConstructObject instantiates a new object based on a specified class,
prototype, and parent object, and then invokes its constructor function. cx is a
pointer to a context associated with the run time in which to establish the new
object. clasp is a pointer to an existing class to use for internal methods, such
as finalize. proto is an optional pointer to the prototype object with which
to associate the new object.

Set proto to NULL to force JS to assign a prototype object for you. In this case,
JS_NewObject attempts to assign the new object the prototype object
belonging to clasp, if one is defined there. Otherwise, it creates an empty object
stub for the prototype.

parent is an optional pointer to an existing object to which to set the new
object’s parent object property. You can set parent to NULL if you do not want
to set the parent property.

On success, JS_ConstructObject returns a pointer to the newly instantiated
object. Otherwise it returns NULL.

See also JS_NewObject,, JS_DefineObject, JS_ValueToObject, JS_NewArrayObject,
JS_GetFunctionObject

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

clasp JSClass * Pointer to the class to use for the new object.

proto JSObject * Pointer to the prototype object to use for the new class.

parent JSObject * Pointer to which to set the new object’s __parent__ property.

Chapter 2, JavaScript API Reference 105

Function Definitions

JS_DefineObject
Function. Instantiates an object that is a property of another object.

Syntax JSObject * JS_DefineObject(JSContext *cx, JSObject *obj,
const char *name, JSClass *clasp, JSObject *proto,
uintN flags);

Description JS_DefineObject instantiates and names a new object for an existing object,
obj. name is the property name to assign to obj to hold the new object, and
flags contains the property flags to set for the newly created property. The
following table lists possible values you can pass in flags, either singly, or
OR’d together:

clasp is a pointer to the base class to use when creating the new object, and
proto is an pointer to the prototype upon which to base the new object. If you
set proto to NULL, JS sets the prototype object for you. The parent object for
the new object is set to obj.

JS_DefineObject returns a pointer to the newly created property object if
successful. If the property already exists, or cannot be created,
JS_DefineObject returns NULL.

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information for error
reporting.

obj JSObject * Object to which this new object belongs as a property.

name const char *Name of the property that encapsulates the new object in obj.

clasp JSClass * Class to use for the new object.

proto JSObject * Prototype object to use for the new object.

flags uintN Property flags for the new object.

Flag Purpose

JSPROP_ENUMERATE Property is visible to for and in loops.

JSPROP_READONLY Property is read only.

JSPROP_PERMANENT Property cannot be deleted.

JSPROP_EXPORTED Property can be imported by other objects.

JSPROP_INDEX Property is actually an index into an array of properties, and
is cast to a const char *.

Function Definitions

106 JavaScript C Engine API Reference

See also JS_NewObject, JS_ValueToObject, JS_DefineConstDoubles, JS_DefineProperties,
JS_DefineProperty, JS_DefinePropertyWithTinyId, JS_DefineFunctions,
JS_DefineFunction, JS_DefineElement

JS_DefineConstDoubles
Function. Creates one or more constant double-valued properties for an object.

Syntax JSBool JS_DefineConstDoubles(JSContext *cx, JSObject *obj,
JSConstDoubleSpec *cds);

Description JS_DefineConstDoubles creates one or more properties for a specified object,
obj, where each property consists of a double value. Each property is
automatically assigned attributes as specified in the flags field of the
JSConstDoubleSpec struct pointed to by cds. If flags is set to zero, the
attributes for the property are automatically set to JSPROP_PERMANENT |
JSPROP_READONLY.

cds is a pointer to the first element of an array of JSConstDoubleSpecs. Each
array element defines a single property name and property value to create. The
name field of last element of the array must contain a zero value.
JS_DefineConstDoubles creates one property for each element in the array
what contains a non-zero name field.

If successful, JS_DefineConstDoubles returns JS_TRUE, indicating it has
created all properties listed in the array. Otherwise it returns JS_FALSE.

See also JS_DefineObject, JS_DefineProperties, JS_DefineProperty,
JS_DefinePropertyWithTinyId, JS_DefineFunctions, JS_DefineFunction,
JS_DefineElement, JSConstDoubleSpec

JS_DefineProperties

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

obj JSObject * Object for which to create new properties.

*cds JSConstDoubleSpec * Pointer to an array of structs containing double property values and
property names to create. The last array element must contain zero-
valued members.

Chapter 2, JavaScript API Reference 107

Function Definitions

Function. Creates one or more properties for an object.

Syntax JSBool JS_DefineProperties(JSContext *cx, JSObject *obj,
JSPropertySpec *ps);

Description JS_DefineProperties creates one or more properties in a specified object,
obj.

ps is a pointer to the first element of an array of JSPropertySpec structures.
Each array element defines a single property: its name, id, flags, and
getProperty and setProperty methods. The name field of the last array element
must contain zero-valued members. JS_DefineProperties creates one
property for each element in the array with a non-zero name field.

If successful, JS_DefineProperties returns JS_TRUE, indicating it has created
all properties listed in the array. Otherwise it returns JS_FALSE.

See also JS_DefineObject, JS_DefineConstDoubles, JS_DefineProperty,
JS_DefinePropertyWithTinyId, JS_DefineFunctions, JS_DefineFunction,
JS_DefineElement, JSPropertySpec

JS_DefineProperty
Function. Creates a single property for a specified object.

Syntax JSBool) JS_DefineProperty(JSContext *cx, JSObject *obj,
const char *name, jsval value, JSPropertyOp getter,
JSPropertyOp setter, uintN flags);

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

obj JSObject * Object for which to create new properties.

ps JSPropertySpec * Pointer to an array containing names, ids, flags, and getProperty and
setProperty method for the properties to create. The last array element
must contain zero-valued members.

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

obj JSObject * Object for which to create the new property.

name const char * Name for the property to create.

Function Definitions

108 JavaScript C Engine API Reference

Description JS_DefineProperty defines a single property in a specified object, obj.

name is the name to assign to the property in the object. value is a jsval that
defines the property’s data type and initial value. getter and setter identify
the getProperty and setProperty methods for the property, respectively. If
you pass null values for these entries, JS_DefineProperties assigns the
default getProperty and setProperty methods to this property. flags
contains the property flags to set for the newly created property. The following
table lists possible values you can pass in flags, either singly, or OR’d together:

Note While you can assign a setProperty method to a property and set flags to
JSPROP_READONLY, the setter method will not be called on this property.

If it successfully creates the property, JS_DefineProperty returns JS_TRUE. If
the property already exists, or cannot be created, JS_DefineProperty returns
JS_FALSE.

See also JS_DefineUCProperty, JS_DefineObject, JS_DefineConstDoubles,
JS_DefineProperties, JS_DefinePropertyWithTinyId, JS_DefineFunctions,
JS_DefineFunction, JS_DefineElement

JS_DefineUCProperty
Function. Creates a single Unicode-encoded property for a specified object.

Syntax JSBool) JS_DefineUCProperty(JSContext *cx, JSObject *obj,

value jsval Initial value to assign to the property.

getter JSPropertyOp getProperty method for retrieving the current property value.

setter JSPropertyOp setProperty method for specifying a new property value.

flags uintN Property flags.

Flag Purpose

JSPROP_ENUMERATE Property is visible in for and in loops.

JSPROP_READONLY Property is read only.

JSPROP_PERMANENT Property cannot be deleted.

JSPROP_EXPORTED Property can be imported by other objects.

JSPROP_INDEX Property is actually an index into an array of properties, and
is cast to a const char *.

Chapter 2, JavaScript API Reference 109

Function Definitions

const jschar *name, size_t namelen, jsval value,
JSPropertyOp getter, JSPropertyOp setter, uintN attrs);

Description JS_DefineUCProperty defines a single Unicode-encoded property in a
specified object, obj.

name is the Unicode-encoded name to assign to the property in the object.
namelen is the length, in bytes, of name. value is a jsval that defines the
property’s data type and initial value. getter and setter identify the
getProperty and setProperty methods for the property, respectively. If you
pass null values for these entries, JS_DefineUCProperties assigns the default
getProperty and setProperty methods to this property. attrs contains the
property flags to set for the newly created property. The following table lists
possible values you can pass in attrs, either singly, or OR’d together:

Note While you can assign a setProperty method to a property and set attrs to
JSPROP_READONLY, the setter method will not be called on this property.

If it successfully creates the property, JS_DefineUCProperty returns JS_TRUE.
If the property already exists, or cannot be created, JS_DefineUCProperty
returns JS_FALSE.

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

obj JSObject * Object for which to create the new property.

name const jschar * Name for the property to create.

namelen size_t Length of name, in bytes.

value jsval Initial value to assign to the property.

getter JSPropertyOp getProperty method for retrieving the current property value.

setter JSPropertyOp setProperty method for specifying a new property value.

attrs uintN Property flags.

Flag Purpose

JSPROP_ENUMERATE Property is visible in for and in loops.

JSPROP_READONLY Property is read only.

JSPROP_PERMANENT Property cannot be deleted.

JSPROP_EXPORTED Property can be imported by other objects.

JSPROP_INDEX Property is actually an index into an array of properties, and
is cast to a const char *.

Function Definitions

110 JavaScript C Engine API Reference

See also JS_DefineProperty, JS_DefineObject, JS_DefineConstDoubles,
JS_DefineProperties, JS_DefinePropertyWithTinyId, JS_DefineFunctions,
JS_DefineFunction, JS_DefineElement

JS_DefinePropertyWithTinyId
Function. Creates a single property for a specified object and assigns it an ID
number.

Syntax JSBool JS_DefinePropertyWithTinyId(JSContext *cx,
JSObject *obj, const char *name, int8 tinyid, jsval value,
JSPropertyOp getter, JSPropertyOp setter, uintN flags);

Description JS_DefinePropertyWithTinyId defines a single property for a specified
object, obj.

name is the name to assign to the property in the object. value is a jsval that
defines the property’s data type and initial value.

tinyid is an 8-bit value that simplifies determining which property to access,
and is especially useful in getProperty and setProperty methods that are
shared by a number of different properties.

getter and setter identify the getProperty and setProperty methods for
the property, respectively. If you pass null values for these entries,
JS_DefinePropertyWithTinyId assigns the default getProperty and

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

obj JSObject * Object for which to create the new property.

name const char * Name for the property to create.

tinyid int8 8-bit ID to aid in sharing getProperty/setProperty methods among
properties.

value jsval Initial value to assign to the property.

getter JSPropertyOp getProperty method for retrieving the current property value.

setter JSPropertyOp setProperty method for specifying a new property value.

flags uintN Property flags.

Chapter 2, JavaScript API Reference 111

Function Definitions

setProperty methods to this property. flags contains the property flags to
set for the newly created property. The following table lists possible values you
can pass in flags, either singly, or OR’d together:

Note While you can assign a setProperty method to a property and set flags to
JSPROP_READONLY, the setter method will not be called on this property.

If it successfully creates the property, JS_DefinePropertyWithTinyId returns
JS_TRUE. If the property already exists, or cannot be created, it returns
JS_FALSE.

See also JS_DefineObject, JS_DefineConstDoubles, JS_DefineProperties,
JS_DefineProperty, JS_DefineUCProperty, JS_DefineFunctions,
JS_DefineFunction, JS_DefineElement, JS_DefineUCPropertyWithTinyID

JS_DefineUCPropertyWithTinyID
Function. Creates a single, Unicode-encoded property for a specified object and
assigns it an ID number.

Syntax JSBool JS_DefinePropertyWithTinyId(JSContext *cx,
JSObject *obj, const jschar *name, size_t namelen,
int8 tinyid, jsval value, JSPropertyOp getter,
JSPropertyOp setter, uintN attrs);

Flag Purpose

JSPROP_ENUMERATE Property is visible in for and in loops.

JSPROP_READONLY Property is read only.

JSPROP_PERMANENT Property cannot be deleted.

JSPROP_EXPORTED Property can be imported by other objects.

JSPROP_INDEX Property is actually an index into an array of properties, and
is cast to a const char *.

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

obj JSObject * Object for which to create the new property.

name const jschar * Name for the property to create.

namelen size_t Length, in bytes, of name.

tinyid int8 8-bit ID to aid in sharing getProperty/setProperty methods among
properties.

Function Definitions

112 JavaScript C Engine API Reference

Description JS_DefineUCPropertyWithTinyId defines a single, Unicode-encoded
property for a specified object, obj.

name is the Unicode-encoded name to assign to the property in the object.
namelen is the length, in bytes, of name. value is a jsval that defines the
property’s data type and initial value.

tinyid is an 8-bit value that simplifies determining which property to access,
and is especially useful in getProperty and setProperty methods that are
shared by a number of different properties.

getter and setter identify the getProperty and setProperty methods for
the property, respectively. If you pass null values for these entries,
JS_DefineUCPropertyWithTinyId assigns the default getProperty and
setProperty methods to this property. attrs contains the property flags to
set for the newly created property. The following table lists possible values you
can pass in sttrs, either singly, or OR’d together:

Note While you can assign a setProperty method to a property and set attrs to
JSPROP_READONLY, the setter method will not be called on this property.

If it successfully creates the property, JS_DefineUCPropertyWithTinyId
returns JS_TRUE. If the property already exists, or cannot be created, it returns
JS_FALSE.

See also JS_DefineObject, JS_DefineConstDoubles, JS_DefineProperties,
JS_DefineProperty, JS_DefineUCProperty, JS_DefineFunctions,
JS_DefineFunction, JS_DefineElement, JS_DefinePropertyWithTinyId

value jsval Initial value to assign to the property.

getter JSPropertyOp getProperty method for retrieving the current property value.

setter JSPropertyOp setProperty method for specifying a new property value.

attrs uintN Property flags.

Flag Purpose

JSPROP_ENUMERATE Property is visible in for and in loops.

JSPROP_READONLY Property is read only.

JSPROP_PERMANENT Property cannot be deleted.

JSPROP_EXPORTED Property can be imported by other objects.

JSPROP_INDEX Property is actually an index into an array of properties, and
is cast to a const char *.

Chapter 2, JavaScript API Reference 113

Function Definitions

JS_AliasProperty
Function. Deprecated. Create an alias for a native property.

Syntax JSBool JS_AliasProperty(JSContext *cx, JSObject *obj,
const char *name, const char *alias);

Description JS_AliasProperty assigns an alternate name for a property associated with a
native object. obj is the object to which the property belongs. name is the
property’s current name in the object, and alias is the alternate name to assign
to the property.

Note This feature is deprecated, meaning that it is currently supported only for
backward compatibility with existing applications. Future versions of the
engine may no longer support this function.

An alias does not replace a property’s name; it supplements it, providing a
second way to reference a property. If the alias is successfully created and
associated with the property, JS_AliasProperty returns JS_TRUE. Creating an
alias does not change the length of the property array.

If the property name you specify does not exist, JS_AliasProperty reports an
error, and returns JS_FALSE. If the property is currently out of scope, already
exists, or the alias itself cannot be assigned to the property, JS_AliasProperty
does not report an error, but returns JS_FALSE.

Once you create an alias, you can reassign it to other properties as needed.
Aliases can also be deleted. Deleting an alias does not delete the property to
which it refers.

See also JS_DefineProperty, JS_DefineUCProperty, JS_DefinePropertyWithTinyId,
JS_DefineUCPropertyWithTinyID, JS_LookupProperty, JS_GetProperty,
JS_SetProperty, JS_DeleteProperty

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

obj JSObject * Object for which to create the alias.

name const char * Name of the property for which to create an alias.

alias const char * Alias name to assign to the property.

Function Definitions

114 JavaScript C Engine API Reference

JS_LookupProperty
Function. Determines if a specified property exists.

Syntax JSBool JS_LookupProperty(JSContext *cx, JSObject *obj,
const char *name, jsval *vp);

Description JS_LookupProperty examines a specified JS object, obj, for a property named
name. If the property exists, vp is set either to the last retrieved value of the
property if it exists, or to JSVAL_VOID if it does not, and JS_LookupProperty
returns JS_TRUE. On error, such as running out of memory during the search,
JS_LookupProperty returns JS_FALSE, and vp is undefined.

See also JS_PropertyStub, JS_DefineProperty, JS_DefineUCProperty,
JS_DefinePropertyWithTinyId, JS_DefineUCPropertyWithTinyID,
JS_AliasProperty, JS_GetProperty, JS_SetProperty, JS_DeleteProperty

JS_LookupUCProperty
Function. Determines if a specified, Unicode-encoded property exists.

Syntax JSBool JS_LookupUCProperty(JSContext *cx, JSObject *obj,
const jschar *name, size_t namelen, jsval *vp);

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

obj JSObject * Object to search on for the property.

name const char * Name of the property to look up.

vp jsval * Pointer to a variable into which to store the last retrieved value of the property
if it exists. If not, vp is set to JSVAL_VOID.

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

obj JSObject * Object to search on for the property.

name const jschar * Name of the property to look up.

namelen size_t Length, in bytes, of name.

vp jsval * Pointer to a variable into which to store the last retrieved value of the
property if it exists. If not, vp is set to JSVAL_VOID.

Chapter 2, JavaScript API Reference 115

Function Definitions

Description JS_LookupUCProperty examines a specified JS object, obj, for a Unicode-
encoded property named name. namelen indicates the size, in bytes, of name. If
the property exists, vp is set either to the last retrieved value of the property if
it exists, or to JSVAL_VOID if it does not, and JS_LookupProperty returns
JS_TRUE. On error, such as running out of memory during the search,
JS_LookupProperty returns JS_FALSE, and vp is undefined.

See also JS_LookupProperty, JS_PropertyStub, JS_DefineProperty, JS_DefineUCProperty,
JS_DefinePropertyWithTinyId, JS_DefineUCPropertyWithTinyID,
JS_AliasProperty, JS_GetProperty, JS_SetProperty, JS_DeleteProperty

JS_GetProperty
Function. Finds a specified property and retrieves its value.

Syntax JSBool JS_GetProperty(JSContext *cx, JSObject *obj,
const char *name, jsval *vp);

Description JS_GetProperty examines a specified JS object, obj, its scope and prototype
links, for a property named name. If the property is not defined on the object in
its scope, or in its prototype links, vp is set to JSVAL_VOID.

If the property exists, JS_GetProperty sets vp to the current value of the
property, and returns JS_TRUE. If an error occurs during the search,
JS_GetProperty returns JS_FALSE, and vp is undefined.

See also JS_PropertyStub, JS_DefineProperty, JS_DefineUCProperty,
JS_DefinePropertyWithTinyId, JS_DefineUCPropertyWithTinyID,
JS_AliasProperty, JS_LookupProperty, JS_GetUCProperty, JS_SetProperty,
JS_SetUCProperty, JS_DeleteProperty, JS_DeleteProperty2,
JS_DeleteUCProperty2

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

obj JSObject * Object to search on for the property.

name const char * Name of the property to look up.

vp jsval * Pointer to a variable into which to store the current value of the property if it
exists. If not, vp is set to JSVAL_VOID.

Function Definitions

116 JavaScript C Engine API Reference

JS_GetUCProperty
Function. Finds a specified, Unicode-encoded property and retrieves its value.

Syntax JSBool JS_GetUCProperty(JSContext *cx, JSObject *obj,
const jschar *name, size_t namelen, jsval *vp);

Description JS_GetUCProperty examines a specified JS object, obj, its scope and
prototype links, for a property named name. namelen indicates the size, in
bytes, of name. If the property is not defined on the object in its scope, or in its
prototype links, vp is set to JSVAL_VOID.

If the property exists, JS_GetUCProperty sets vp to the current value of the
property, and returns JS_TRUE. If an error occurs during the search,
JS_GetUCProperty returns JS_FALSE, and vp is undefined.

See also JS_PropertyStub, JS_DefineProperty, JS_DefineUCProperty,
JS_DefinePropertyWithTinyId, JS_DefineUCPropertyWithTinyID,
JS_AliasProperty, JS_LookupProperty, JS_GetProperty, JS_SetProperty,
JS_SetUCProperty, JS_DeleteProperty, JS_DeleteProperty2,
JS_DeleteUCProperty2

JS_SetProperty
Function. Sets the current value of a property belonging to a specified object.

Syntax JSBool JS_SetProperty(JSContext *cx, JSObject *obj,

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

obj JSObject * Object to search on for the property.

name const jschar * Name of the property to look up.

namelen size_t Length, in bytes of the the property name to look up.

vp jsval * Pointer to a variable into which to store the current value of the property if it
exists. If not, vp is set to JSVAL_VOID.

Chapter 2, JavaScript API Reference 117

Function Definitions

const char *name, jsval *vp);

Description JS_SetProperty sets the current value of a property for a specified object. If
the property does not exist, this function creates it, and inherits its attributes
from a like-named property in the object’s prototype chain. For properties it
creates, JS_SetProperty sets the JSPROP_ENUMERATE attribute in the
property’s flags field; all other values for the property are undefined.

name is the property to set, and vp is a pointer to the new value to set for the
property. On successfully setting a property to a new value, JS_SetProperty
returns JS_TRUE. Otherwise it returns JS_FALSE.

If you attempt to set the value for a read-only property using JavaScript 1.2 or
earlier, JS_SetProperty reports an error and returns JS_FALSE. For JavaScript
1.3 and greater, such an attempt is silently ignored.

If you attempt to set the value for a property that does not exist, and there is a
like-named read-only property in the object’s prototype chain,
JS_SetProperty creates a new read-only property on the object, sets its value
to JSVAL_VOID, and reports a read-only violation error.

See also JS_PropertyStub, JS_DefineProperty, JS_DefineUCProperty,
JS_DefinePropertyWithTinyId, JS_DefineUCPropertyWithTinyID,
JS_AliasProperty, JS_LookupProperty, JS_GetProperty, JS_GetUCProperty,
JS_SetUCProperty, JS_DeleteProperty, JS_DeleteProperty2,
JS_DeleteUCProperty2

JS_SetUCProperty
Function. Sets the current value of a Unicode-encoded property belonging to a
specified object.

Syntax JSBool JS_SetUCProperty(JSContext *cx, JSObject *obj,

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

obj JSObject * Object to which the property to set belongs.

name const char * Name of the property to set.

vp jsval * Pointer to the value to set for the property.

Function Definitions

118 JavaScript C Engine API Reference

const char *name, jsval *vp);

Description JS_SetUCProperty sets the current value of a property for a specified object.
If the property does not exist, this function creates it, and inherits its attributes
from a like-named property in the object’s prototype chain. For properties it
creates, JS_SetUCProperty sets the JSPROP_ENUMERATE attribute in the
property’s flags field; all other values for the property are undefined.

name is the property to set, namelen indicates the size, in bytes, of name, and
vp is a pointer to the new value to set for the property. On successfully setting
a property to a new value, JS_SetUCProperty returns JS_TRUE. Otherwise it
returns JS_FALSE.

If you attempt to set the value for a read-only property using JavaScript 1.2 or
earlier, JS_SetUCProperty reports an error and returns JS_FALSE. For
JavaScript 1.3 and greater, such an attempt is silently ignored.

If you attempt to set the value for a property that does not exist, and there is a
like-named read-only property in the object’s prototype chain,
JS_SetUCProperty creates a new read-only property on the object, sets its
value to JSVAL_VOID, and reports a read-only violation error.

See also JS_PropertyStub, JS_DefineProperty, JS_DefineUCProperty,
JS_DefinePropertyWithTinyId, JS_DefineUCPropertyWithTinyID,
JS_AliasProperty, JS_LookupProperty, JS_GetProperty, JS_GetUCProperty,
JS_SetProperty, JS_DeleteProperty, JS_DeleteProperty2, JS_DeleteUCProperty2

JS_DeleteProperty
Function. Removes a specified property from an object.

Syntax JSBool JS_DeleteProperty(JSContext *cx, JSObject *obj,

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

obj JSObject * Object to which the property to set belongs.

name const jschar * Name of the property to set.

namelen size_t Length, in bytes, of the name of the property to set.

vp jsval * Pointer to the value to set for the property.

Chapter 2, JavaScript API Reference 119

Function Definitions

const char *name);

Description JS_DeleteProperty removes a specified property, name, from an object, obj.
If an object references a property belonging to a prototype, the property
reference is removed from the object, but the prototype’s property is not
deleted. If deletion is successful, JS_DeleteProperty returns JS_TRUE.
Otherwise it returns JS_FALSE.

Note Per the ECMA standard, JS_DeleteProperty removes read-only properties
from objects as long as those properties are not also permanent.

For JavaScript 1.2 and earlier, if failure occurs because you attempt to delete a
permanent property, JS_DeleteProperty reports the error before returning
JS_FALSE. For JavaScript 1.3, the attempt is silently ignored.

Note To remove all properties from an object, call JS_ClearScope.

See also JS_PropertyStub, JS_DefineProperty, JS_DefineUCProperty,
JS_DefinePropertyWithTinyId, JS_DefineUCPropertyWithTinyID,
JS_AliasProperty, JS_LookupProperty, JS_GetProperty, JS_SetProperty,
JS_LookupUCProperty, JS_GetUCProperty, JS_SetUCProperty,
JS_DeleteProperty2, JS_DeleteUCProperty2, JS_ClearScope

JS_DeleteProperty2
Function. Removes a specified property from an object.

Syntax JSBool JS_DeleteProperty2(JSContext *cx, JSObject *obj,
const char *name, jsval *rva);

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

obj JSObject * Object from which to delete a property.

name const char * Name of the property to delete.

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

obj JSObject * Object from which to delete a property.

name const char * Name of the property to delete.

rval jsval * Pointer to the deleted value.

Function Definitions

120 JavaScript C Engine API Reference

Description JS_DeleteProperty2 removes a specified property, name, from an object,
obj, and stores a pointer to the deleted property in rval. If rval is NULL, the
property is deleted. If an object references a property belonging to a prototype,
the property reference is removed from the object, but the prototype’s property
is not deleted. If deletion is successful, JS_DeleteProperty2 returns JS_TRUE.
Otherwise it returns JS_FALSE.

Note Per the ECMA standard, JS_DeleteProperty2 removes read-only properties
from objects as long as those properties are not also permanent.

For JavaScript 1.2 and earlier, if failure occurs because you attempt to delete a
permanent property, JS_DeleteProperty2 reports the error before returning
JS_FALSE. For JavaScript 1.3, the attempt is silently ignored. In both these
cases, rval will contain a non-NULL pointer to the undeleted property.

Note To remove all properties from an object, call JS_ClearScope.

See also JS_PropertyStub, JS_DefineProperty, JS_DefineUCProperty,
JS_DefinePropertyWithTinyId, JS_DefineUCPropertyWithTinyID,
JS_AliasProperty, JS_LookupProperty, JS_GetProperty, JS_SetProperty,
JS_LookupUCProperty, JS_GetUCProperty, JS_SetUCProperty,
JS_DeleteProperty, JS_DeleteUCProperty2, JS_ClearScope

JS_DeleteUCProperty2
Function. Removes a specified Unicode-encoded property from an object.

Syntax JSBool JS_DeleteUCProperty2(JSContext *cx, JSObject *obj,
const jschar *name, size_t namelen, jsval *rva);

Description JS_DeleteUCProperty2 removes a specified property, name, from an object,
obj, and stores a pointer to the deleted property in rval. If rval is NULL, the
property is deleted. namelen is the size, in bytes, of the property name to
delete. If an object references a property belonging to a prototype, the property

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

obj JSObject * Object from which to delete a property.

name const jschar * Name of the property to delete.

namelen size_t Length, in bytes, of the property name.

rval jsval * Pointer to the deleted value.

Chapter 2, JavaScript API Reference 121

Function Definitions

reference is removed from the object, but the prototype’s property is not
deleted. If deletion is successful, JS_DeleteUCProperty2 returns JS_TRUE.
Otherwise it returns JS_FALSE.

Note Per the ECMA standard, JS_DeleteUCProperty2 removes read-only properties
from objects as long as those properties are not also permanent.

For JavaScript 1.2 and earlier, if failure occurs because you attempt to delete a
permanent property, JS_DeleteUCProperty2 reports the error before
returning JS_FALSE. For JavaScript 1.3, the attempt is silently ignored. In both
these cases, rval will contain a non-NULL pointer to the undeleted property.

Note To remove all properties from an object, call JS_ClearScope.

See also JS_PropertyStub, JS_DefineProperty, JS_DefineUCProperty,
JS_DefinePropertyWithTinyId, JS_DefineUCPropertyWithTinyID,
JS_AliasProperty, JS_LookupProperty, JS_GetProperty, JS_SetProperty,
JS_LookupUCProperty, JS_GetUCProperty, JS_SetUCProperty,
JS_DeleteProperty, JS_DeleteProperty2, JS_ClearScope

JS_GetPropertyAttributes
Function. Retrieves the attributes of a specified property.

Syntax JSBool JS_GetPropertyAttributes(JSContext *cx, JSObject *obj,
const char *name, uintN *attrsp, JSBool *foundp);

Description JS_GetPropertyAttributes retrieves the attributes for a specified property,
name. cx is the context, and obj is a pointer to the object that owns the
property. attrsp is a pointer to the unsigned integer storage area into which to
retrieve the attributes.

If JS_GetPropertyAttributes cannot locate an object with the specified
property, it returns JS_FALSE, and both attrsp and foundp are undefined.

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

obj JSObject * Object from which to retrieve property attributes.

name const char * Name of the property from which to retrieve attributes.

uintN attrsp * Pointer to the storage area into which to place retrieves attributes.

foundp JSBool * Flag indicating whether or not the specified property was located.

Function Definitions

122 JavaScript C Engine API Reference

If the specified property or the specified object does not exist, foundp is set to
JS_FALSE. If the property exists, but belongs to another object,
JS_GetPropertyAttributes then returns JS_FALSE, and attrsp is
undefined. If the property exists and it belongs to the object you specify, then
foundp is set to JS_TRUE. If JS_GetPropertyAttributes can actually read the
current property values, it returns JS_TRUE. Otherwise, it returns JS_FALSE.

See also JS_SetPropertyAttributes

JS_SetPropertyAttributes
Function. Sets the attributes for a specified property.

Syntax JSBool JS_SetPropertyAttributes(JSContext *cx, JSObject *obj,
const char *name, uintN attrs, JSBool *foundp);

Description JS_SetPropertyAttributes sets the attributes for a specified property, name.
cx is the context, and obj is a pointer to the object that owns the property.
attrsp is an unsigned integer containing the attribute value to set, and can
contain 0 or more of the following values OR’d:

• JSPROP_ENUMERATE: property is visible in for loops.
• JSPROP_READONLY: property is read-only.
• JSPROP_PERMANENT: property cannot be deleted.
• JSPROP_EXPORTED: property can be exported outside its object.
• JSPROP_INDEX: property is actually an array element.

If JS_SetPropertyAttributes cannot locate an object with the specified
property, it returns JS_FALSE, and foundp is undefined.

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

obj JSObject * Object for which to set property attributes.

name const char * Name of the property for which to set attributes.

uintN attrsp Attribute values to set.

foundp JSBool * Flag indicating whether or not the specified property was located.

Chapter 2, JavaScript API Reference 123

Function Definitions

If the specified property or the specified object does not exist, foundp is set to
JS_FALSE. Then, iff the property exists, but is associated with a different object,
JS_SetPropertyAttributes returns JS_TRUE. Otherwise, it sets foundp to
JS_TRUE, and attempts to set the attributes as specified. If the attributes can be
set, JS_SetPropertyAttributes returns JS_TRUE. If not, it returns JS_FALSE.

See also JS_GetPropertyAttributes

JS_NewArrayObject
Function. Creates a new array object.

Syntax JSObject * JS_NewArrayObject(JSContext *cx, jsint length,
jsval *vector);

Description JS_NewArrayObject creates a new array object for a specified executable
script context, cx. If array creation is successful, JS_NewArrayObject initializes
each element in the array as an individually indexed property, and returns a
pointer to the new object. Otherwise it returns NULL.

length specifies the number of elements, or slots, in the array. If length is 0,
JS_NewArrayObject creates the array object, but does not initialize any array
elements.

See also JS_IsArrayObject, JS_GetArrayLength, JS_SetArrayLength, JS_DefineElement,
JS_AliasElement, JS_LookupElement, JS_GetElement, JS_SetElement,
JS_DeleteElement

JS_IsArrayObject
Function. Determines if a specified object is of the Array class.

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

length jsint Number of elements to include in the array.

vector jsval * Pointer to the storage location for the array.

Function Definitions

124 JavaScript C Engine API Reference

Syntax JSBool JS_IsArrayObject(JSContext *cx, JSObject *obj);

Description JS_IsArrayObject determines if a specified object, obj, is of the Array class.
If the object is of the Array class, JS_IsArrayObject returns JS_TRUE.
Otherwise it returns JS_FALSE.

See also JS_NewArrayObject, JS_GetArrayLength, JS_SetArrayLength, JS_DefineElement,
JS_AliasElement, JS_LookupElement, JS_GetElement, JS_SetElement,
JS_DeleteElement

JS_GetArrayLength
Function. Retrieves the number of elements in an array object.

Syntax JSBool JS_GetArrayLength(JSContext *cx, JSObject *obj,
jsint *lengthp);

Description JS_GetArrayLength reports the number of elements in an array object, obj. If
the number of elements can be determined, JS_GetArrayLength reports the
number of elements in lengthp and returns JS_TRUE. Otherwise, it sets
lengthp to NULL and returns JS_FALSE.

See also JS_NewArrayObject, JS_IsArrayObject, JS_SetArrayLength, JS_DefineElement,
JS_AliasElement, JS_LookupElement, JS_GetElement, JS_SetElement,
JS_DeleteElement

JS_SetArrayLength
Function. Specifies the number of elements for an array object.

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

obj JSObject * Object to examine.

Argument Type Description

cx JSContext * Pointer to the JS context for the object.

obj JSObject * Array object for which the number of array elements.

lengthp jsint * Variable in which to report the number of array elements.

Chapter 2, JavaScript API Reference 125

Function Definitions

Syntax JSBool JS_SetArrayLength(JSContext *cx, JSObject *obj,
jsint length);

Description JS_SetArrayLength specifies the number of elements for an array object, obj.
length indicates the number of elements. If JS_SetArrayLength successfully
sets the number of elements, it returns JS_TRUE. Otherwise it returns
JS_FALSE.

You can call JS_SetArrayLength either to set the number of elements for an
array object you created without specifying an initial number of elements, or to
change the number of elements allocated for an array. If you set a shorter array
length on an existing array, the elements that no longer fit in the array are
destroyed.

Note Setting the number of array elements does not initialize those elements. To
initialize an element call JS_DefineElement. If you call JS_SetArrayLength
on an existing array, and length is less than the highest index number for
previously defined elements, all elements greater than or equal to length are
automatically deleted.

See also JS_NewArrayObject, JS_IsArrayObject, JS_GetArrayLength, JS_DefineElement,
JS_AliasElement, JS_LookupElement, JS_GetElement, JS_SetElement,
JS_DeleteElement

JS_HasArrayLength
Function. Determines if an object has an array length property.

Syntax JSBool JS_HasArrayLength(JSContext *cx, JSObject *obj,
jsuint *lengthp);

Description JS_HasArrayLength determines if an object, obj, has a length property. If the
property exists, JS_HasArrayLength returns the current value of the property
in lengthp.

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

obj JSObject * Array object for which to set the number of array elements.

length jsint Number of array elements to set.

Function Definitions

126 JavaScript C Engine API Reference

On success, JS_HasArrayLength returns JS_TRUE, and lengthp indicates the
current value of the array property. On failure, JS_HasArrayLength returns
JS_FALSE, and lengthp is undefined.

See also JS_NewArrayObject, JS_IsArrayObject, JS_GetArrayLength, JS_SetArrayLength,
JS_DefineElement, JS_AliasElement, JS_LookupElement, JS_GetElement,
JS_SetElement, JS_DeleteElement

JS_DefineElement
Function. Creates a single element or numeric property for a specified object.

Syntax JSBool JS_DefineElement(JSContext *cx, JSObject *obj,
jsint index, jsval value, JSPropertyOp getter,
JSPropertyOp setter, uintN flags);

Description JS_DefineElement defines a single element or numeric property for a
specified object, obj.

index is the slot number in the array for which to define an element. It may be
an valid jsval integer. value is a jsval that defines the element’s data type and
initial value. getter and setter identify the getProperty and setProperty
methods for the element, respectively. If you pass null values for these entries,
JS_DefineElement assigns the default getProperty and setProperty

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

obj JSObject * Object for which to create the new element.

index jsint Array index number for the element to define.

value jsval Initial value to assign to the element.

getter JSPropertyOp getProperty method for retrieving the current element value.

setter JSPropertyOp setProperty method for specifying a new element value.

flags uintN Property flags.

Chapter 2, JavaScript API Reference 127

Function Definitions

methods to this element. flags contains the property flags to set for the newly
created element. The following table lists possible values you can pass in
flags, either singly, or OR’d together:

Note While you can assign a setProperty method to a property and set flags to
JSPROP_READONLY, the setter method will not be called on this property.

If it successfully creates the element, JS_DefineElement returns JS_TRUE.
Otherwise it returns JS_FALSE.

See also JS_DefineObject, JS_DefineConstDoubles, JS_DefineProperties,
JS_DefineProperty, JS_DefinePropertyWithTinyId, JS_DefineFunctions,
JS_DefineFunction, JS_NewArrayObject, JS_IsArrayObject, JS_GetArrayLength,
JS_AliasElement, JS_LookupElement, JS_GetElement, JS_SetElement,
JS_DeleteElement

JS_AliasElement
Function. Deprecated. Create an aliased index entry for an existing element or
numeric property of a native object.

Syntax JSBool JS_AliasElement(JSContext *cx, JSObject *obj,
const char *name, jsint alias);

Flag Purpose

JSPROP_ENUMERATE Element is visible in for and in loops.

JSPROP_READONLY Element is read only.

JSPROP_PERMANENT Element cannot be deleted.

JSPROP_EXPORTED Element can be imported by other objects.

JSPROP_INDEX Property is actually an index into an array of properties, and
is cast to a const char *.

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

obj JSObject * Object for which to create the alias.

name const char * Name of the element for which to create an alias. This name corresponds to a
string representation of the element’s current index number.

alias jsint Alias number to assign to the element.

Function Definitions

128 JavaScript C Engine API Reference

Description JS_AliasElement assigns an alternate index number for an element or
numeric property associated with a native object. obj is the object to which the
element belongs. name is the element’s current index in the object, and alias
is the alternate index to assign to the element.

Note This feature is deprecated, meaning that it is currently supported only for
backward compatibility with existing applications. Future versions of the
engine may no longer support this function.

An alias does not replace an element’s current index number; it supplements it,
providing a second way to reference the element. If the alias is successfully
created and associated with the property, JS_AliasElement returns JS_TRUE.
Adding an alias element does not change the element array length.

If the property name you specify does not exist, JS_AliasElement reports an
error, and returns JS_FALSE. If the element is currently out of scope, already
exists, or the alias itself cannot be assigned to the element, JS_AliasElement
does not report an error, but returns JS_FALSE.

Once you create an alias, you can reassign it to other elements as needed.
Aliases can also be deleted. Deleting an alias does not delete the element to
which it refers.

See also JS_NewArrayObject, JS_IsArrayObject, JS_GetArrayLength, JS_SetArrayLength,
JS_DefineElement, JS_LookupElement, JS_GetElement, JS_SetElement,
JS_DeleteElement

JS_LookupElement
Function. Determines if a specified element or numeric property exists.

Syntax JSBool JS_LookupElement(JSContext *cx, JSObject *obj,
jsint index, jsval *vp);

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

obj JSObject * Object to search on for the element.

index jsint Index number of the element to look up.

vp jsval * Pointer to a variable into which to store the current value of the element if it has
a value. If not, vp is set to JSVAL_VOID.

Chapter 2, JavaScript API Reference 129

Function Definitions

Description JS_LookupElement examines a specified JS object, obj, for an element or
numeric property numbered index. If the element exists, vp is set either to the
current value of the property if it has a value, or to JSVAL_VOID if it does not,
and JS_LookupElement returns JS_TRUE. On error, such as running out of
memory during the search, JS_LookupElement returns JS_FALSE, and vp is
undefined.

See also JS_NewArrayObject, JS_IsArrayObject, JS_GetArrayLength, JS_SetArrayLength,
JS_DefineElement, JS_AliasElement, JS_GetElement, JS_SetElement,
JS_DeleteElement

JS_GetElement
Function. Finds specified element or numeric property associated with an
object or the object’s class and retrieves its current value.

Syntax JSBool JS_GetElement(JSContext *cx, JSObject *obj, jsint index,
jsval *vp);

Description JS_GetElement examines a specified JS object, obj, its scope and prototype
links, for an element or numeric property numbered index.

If the element exists, JS_GetElement sets vp to the current value of the
element if it has a value, or to JSVAL_VOID if it does not, and returns JS_TRUE.
If an error occurs during the search, JS_GetElement returns JS_FALSE, and vp
is undefined.

See also JS_NewArrayObject, JS_IsArrayObject, JS_GetArrayLength, JS_SetArrayLength,
JS_DefineElement, JS_AliasElement, JS_LookupElement, JS_SetElement,
JS_DeleteElement

JS_SetElement

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

obj JSObject * Array object to search on for the element.

index jsint Index number of the element to look up.

vp jsval * Pointer to a variable into which to store the current value of the element if it has
a value. If not, vp is set to JSVAL_VOID.

Function Definitions

130 JavaScript C Engine API Reference

Function. Sets the current value of an element or numeric property belonging
to a specified object.

Syntax JSBool JS_SetElement(JSContext *cx, JSObject *obj, jsint index,
jsval *vp);

Description JS_SetElement sets the current value of an element or numeric property for a
specified object. If the element does not exist, this function creates it, and
inherits its attributes from a like-named element in the object’s prototype chain.
For elements it creates, JS_SetElement sets the JSPROP_ENUMERATE attribute
in the element’s flags field; all other values for the property are undefined.

index is element number to set, and vp is a pointer to the new value to set for
the element. On successfully setting an element to a new value,
JS_SetElement returns JS_TRUE. Otherwise it returns JS_FALSE.

If you attempt to set the value for a read-only element using JavaScript 1.2 or
earlier, JS_SetElement reports an error and returns JS_FALSE. For JavaScript
1.3 and greater, such an attempt is silently ignored.

If you attempt to set the value for an element that does not exist, and there is a
like-named read-only element in the object’s prototype chain, JS_SetElement
creates a new read-only element on the object, sets its value to JSVAL_VOID,
and reports a read-only violation error.

See also JS_NewArrayObject, JS_IsArrayObject, JS_GetArrayLength, JS_SetArrayLength,
JS_DefineElement, JS_AliasElement, JS_LookupElement, JS_GetElement,
JS_DeleteElement

JS_DeleteElement
Function. Public. Removes a specified element or numeric property from an
object.

Syntax JSBool JS_DeleteElement(JSContext *cx, JSObject *obj,

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

obj JSObject * Array object to which the element to set belongs.

index jsint Index number of the element to set.

vp jsval * Pointer to the value to set for the element.

Chapter 2, JavaScript API Reference 131

Function Definitions

jsint index);

Description JS_DeleteElement removes a specified element or numeric property, index,
from an object, obj. If an object references an element belonging to a
prototype, the element reference is removed from the object, but the
prototype’s element is not deleted. If deletion is successful, JS_DeleteElement
returns JS_TRUE. Otherwise it returns JS_FALSE.

For JavaScript 1.2 and earlier, if failure occurs because you attempt to delete a
permanent or read-only element, JS_DeleteProperty reports the error before
returning JS_FALSE. For JavaScript 1.3, the attempt is silently ignored.

Note To remove all elements and properties from an object, call JS_ClearScope.

See also JS_NewArrayObject, JS_IsArrayObject, JS_GetArrayLength, JS_SetArrayLength,
JS_DefineElement, JS_AliasElement, JS_LookupElement, JS_GetElement,
JS_SetElement, JS_DeleteElement2, JS_ClearScope

JS_DeleteElement2
Function. Removes a specified element or numeric property from an object.

Syntax JSBool JS_DeleteElement2(JSContext *cx, JSObject *obj,
const char *name, jsval *rva);

Description JS_DeleteElement2 removes a specified element, name, from an object, obj,
and stores a pointer to the deleted element in rval. If rval is NULL, the
element is deleted. If an object references an element belonging to a prototype,

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

obj JSObject * Object from which to delete an element.

index jsint Index number of the element to delete.

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

obj JSObject * Object from which to delete an element.

name const char * Name of the element to delete.

rval jsval * Pointer to the deleted value.

Function Definitions

132 JavaScript C Engine API Reference

the element reference is removed from the object, but the prototype’s element
is not deleted. If deletion is successful, JS_DeleteElement2 returns JS_TRUE.
Otherwise it returns JS_FALSE.

Note Per the ECMA standard, JS_DeleteElement2 removes read-only elements from
objects as long as those elements are not also permanent.

For JavaScript 1.2 and earlier, if failure occurs because you attempt to delete a
permanent element, JS_DeleteElement2 reports the error before returning
JS_FALSE. For JavaScript 1.3, the attempt is silently ignored. In both these
cases, rval will contain a non-NULL pointer to the undeleted element.

Note To remove all elements and properties from an object, call JS_ClearScope.

See also JS_NewArrayObject, JS_IsArrayObject, JS_GetArrayLength, JS_SetArrayLength,
JS_DefineElement, JS_AliasElement, JS_LookupElement, JS_GetElement,
JS_SetElement, JS_DeleteElement, JS_ClearScope

JS_ClearScope
Function. Removes all properties associated with an object.

Syntax void JS_ClearScope(JSContext *cx, JSObject *obj);

Description JS_ClearScope removes all properties and elements from obj in a single
operation. To remove a single property from an object, call
JS_DeleteProperty, and to remove a single array object element, call
JS_DeleteElement.

See also JS_GetScopeChain, JS_DeleteProperty, JS_DeleteElement

JS_Enumerate
Function. Enumerates the properties of a specified object.

Syntax JSIdArray * JS_Enumerate(JSContext *cx, JSObject *obj);

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

obj JSObject * Object from which to delete all properties.

Chapter 2, JavaScript API Reference 133

Function Definitions

Description JS_Enumerate enumerates all properties of a specified object, obj, and returns
an array of property IDs for them. Enumeration occurs in a specified context,
cx.

On success, JS_Enumerate returns a pointer to an array of property IDs. On
failure, it returns NULL.

JS_CheckAccess
Function. Determines the scope of access to an object.

Syntax JSBool JS_CheckAccess(JSContext *cx, JSObject *obj, jsid id,
JSAccessMode mode, jsval *vp, uintN *attrsp);

Description JS_CheckAccess determines the scope of access to an object, obj, and its
scope chain. Checking occurs in a specified context, cx.

id is the JS ID of a property belonging to the object. mode determines the scope
of the access check, and can be one or more of the following enumerated
values OR’d:

• JSACC_PROTO: Permission is granted to check both the object itself and its
underlying propotype object.

• JSACC_PARENT: Permission is granted to check both the object itself and its
underlying parent object.

• JSACC_IMPORT: Permission is granted to check an imported object.

• JSACC_WATCH: Permission is granted to check a debugger watch object.

On success, JS_CheckAccess returns JS_TRUE, vp points to the current value
of the specified property, identified by id, and attrsp points to the value of
the attribute flag for that property. On failure, JS_CheckAccess returns
JS_FALSE, and both vp and attrsp are undefined.

JS_NewFunction
Function. Creates a new JS function that wraps a native C function.

Syntax JSFunction * JS_NewFunction(JSContext *cx, JSNative call,

Function Definitions

134 JavaScript C Engine API Reference

uintN nargs, uintN flags, JSObject *parent,
const char *name);

Description JS_NewFunction creates a new JS function based on the parameters you pass.
call is a native C function call that this function wraps. If you are not
wrapping a native function, use JS_DefineFunction, instead. nargs is the
number of arguments passed to the underlying C function. JS uses this
information to allocate space for each argument.

flags lists the attributes to apply to the function. Currently documented
attributes, JSFUN_BOUND_METHOD and JSFUN_GLOBAL_PARENT, are deprecated
and should no longer be used. They continue to be supported only for existing
applications that already depend on them.

parent is the parent object for this function. If a function has no parent, you
can set parent to NULL. name is the name to assign to the function. If you pass
an empty value, JS sets the function’s name to anonymous.

If JS_NewFunction is successful, it returns a pointer to the newly created
function. Otherwise it returns NULL.

See also JSFUN_BOUND_METHOD, JSFUN_GLOBAL_PARENT, JS_ValueToFunction,
JS_GetFunctionObject, JS_GetFunctionName, JS_DefineFunctions,
JS_DefineFunction, JS_CompileFunction, JS_CompileUCFunction,
JS_DecompileFunction, JS_DecompileFunctionBody, JS_CallFunction,
JS_CallFunctionName, JS_CallFunctionValue, JS_SetBranchCallback

JS_GetFunctionObject
Function. Retrieves the object for a specified function.

Syntax JSObject * JS_GetFunctionObject(JSFunction *fun);

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

call JSNative Native C function call wrapped by this function.

nargs uintN Number of arguments that are passed to the underlying C function.

flags uintN Function attributes.

parent JSObject * Pointer to the parent object for this function.

name const char * Name to assign to the new function. If you do not assign a name to the
function, it is assigned the name “anonymous”.

Chapter 2, JavaScript API Reference 135

Function Definitions

Description JS_GetFunctionObject retrieves the object for a specified function pointer,
fun. All functions are associated with an underlying object. For functions you
create with JS_NewFunction, the object is automatically created for you. For
functions you define with JS_DefineFunction and JS_DefineFunctions,
you specify the object(s) as a parameter.

JS_GetFunctionObject always returns a pointer to an object.

See also JSFUN_BOUND_METHOD, JSFUN_GLOBAL_PARENT, JS_ValueToFunction,
JS_NewFunction, JS_GetFunctionName, JS_DefineFunctions, JS_DefineFunction,
JS_CompileFunction, JS_CompileUCFunction, JS_DecompileFunction,
JS_DecompileFunctionBody, JS_CallFunction, JS_CallFunctionName,
JS_CallFunctionValue, JS_SetBranchCallback

JS_GetFunctionName
Function. Retrieves the given name for a specified function.

Syntax const char * JS_GetFunctionName(JSFunction *fun);

Description JS_GetFunctionName retrieves the function name associated with a function
pointer, fun. The return value is either the name of a function, or the string
“anonymous”, which indicates that the function was not assigned a name when
created.

Note The pointer returned by this function is valid only as long as the specified
function, fun, is in existence.

See also JSFUN_BOUND_METHOD, JSFUN_GLOBAL_PARENT, JS_ValueToFunction,
JS_NewFunction, JS_GetFunctionObject, JS_DefineFunctions,
JS_DefineFunction, JS_CompileFunction, JS_CompileUCFunction,
JS_DecompileFunction, JS_DecompileFunctionBody, JS_CallFunction,
JS_CallFunctionName, JS_CallFunctionValue, JS_SetBranchCallback

JS_DefineFunctions
Function. Creates one or more functions for a JS object.

Syntax JSBool JS_DefineFunctions(JSContext *cx, JSObject *obj,

Function Definitions

136 JavaScript C Engine API Reference

JSFunctionSpec *fs);

Description JS_DefineFunctions creates one or more functions and makes them
properties (methods) of a specified object, obj.

fs is a pointer to the first element of an array of JSFunctionSpec. Each array
element defines a single function: its name, the native C call wrapped by the
function, the number of arguments passed to the function, and its attribute
flags. The last element of the array must contain zero values.
JS_DefineFunctions creates one function for each non-zero element in the
array.

JS_DefineFunctions always returns JS_TRUE, indicating it has created all
functions specified in the array.

Note To define only a single function for an object, call JS_DefineFunction.

See also JS_DefineObject, JS_DefineConstDoubles, JS_DefineProperties,
JS_DefineProperty, JS_DefinePropertyWithTinyId, JS_DefineElement,
JS_ValueToFunction, JS_NewFunction, JS_GetFunctionObject,
JS_GetFunctionName, JS_DefineFunction, JS_CompileFunction,
JS_CompileUCFunction, JS_DecompileFunction, JS_DecompileFunctionBody,
JS_CallFunction, JS_CallFunctionName, JS_CallFunctionValue,
JS_SetBranchCallback

JS_DefineFunction
Function. Creates a function and assigns it as a property to a specified JS object.

Syntax JSFunction * JS_DefineFunction(JSContext *cx, JSObject *obj,

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

obj JSObject * Object for which to define functions.

fs JSFunctionSpec * A null-terminated array of function specifications. Each element of the
array defines an individual function, its name, the built-in native C call it
wraps, the number of arguments it takes, and its attribute flag.

Chapter 2, JavaScript API Reference 137

Function Definitions

const char *name, JSNative call, uintN nargs, uintN flags);

Description JS_DefineFunction defines a single function and assigns it as a property
(method) to a specified object, obj.

name is the name to assign to the function in the object. call is a built-in,
native C call that is wrapped by your function. nargs indicates the number of
arguments the function expects to receive. JS uses this information to allocate
storage space for each argument.

flags lists the attributes to apply to the function. Currently documented
attributes, JSFUN_BOUND_METHOD and JSFUN_GLOBAL_PARENT, are deprecated
and should no longer be used. They continue to be supported only for existing
applications that already depend on them.

If it succesfully creates the property, JS_DefineFunction returns a pointer to
the function. Otherwise it returns NULL.

See also JS_DefineObject, JS_DefineConstDoubles, JS_DefineProperties,
JS_DefineProperty, JS_DefinePropertyWithTinyId, JS_DefineElement,
JSFUN_BOUND_METHOD, JSFUN_GLOBAL_PARENT, JS_ValueToFunction,
JS_NewFunction, JS_GetFunctionObject, JS_DefineFunctions,
JS_CompileFunction, JS_DecompileFunction, JS_DecompileFunctionBody,
JS_CallFunction, JS_CallFunctionName, JS_CallFunctionValue,
JS_SetBranchCallback

JS_CloneFunctionObject
Function. Creates a new function object from an existing function structure.

Syntax JSObject * JS_CloneFunctionObject(JSContext *cx,
JSObject *funobj, JSObject *parent);

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

obj JSObject * Object for which to define a function as a property (method).

name const char * Name to assign to the function.

call JSNative Indicates the built-in, native C call wrapped by this function.

nargs uintN Number of arguments that are passed to the function when it is called.

flags uintN Function attributes.

Function Definitions

138 JavaScript C Engine API Reference

Description JS_CloneFunctionObject creates a new function object. The new object
shares an underlying function structure with funobj. funobj becomes the
prototype for the newly cloned object, which means that its argument
properties are not copied. The cloned object has parent as its parent object.

On success, JS_CloneFunctionObject returns a pointer to the newly created
object. On failure, it returns NULL.

See also JS_GetFunctionObject

JS_CompileScript
Function. Compiles a script for execution.

Syntax JSScript * JS_CompileScript(JSContext *cx, JSObject *obj,
const char *bytes, size_t length, const char *filename,
uintN lineno);

Description JS_CompileScript compiles a script, bytes, for execution. The script is
associated with a JS object. bytes is the string containing the text of the script.
length indicates the size of the text version of the script in bytes.

Note To compile a script using a Unicode character set, call JS_CompileUCScript
instead of this function.

filename is the name of the file (or URL) containing the script. This
information in included in error messages if an eror occurs during compilation.
Similarly, lineno is used to report the line number of the script or file where an
error occurred during compilation.

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

obj JSObject * Object with which the script is associated.

bytes const char * String containing the script to compile.

length size_t Size, in bytes, of the script to compile.

filename const char * Name of file or URL containing the script. Used to report filename or URL in
error messages.

lineno uintN Line number. Used to report the offending line in the file or URL if an error
occurs.

Chapter 2, JavaScript API Reference 139

Function Definitions

If a script compiles successfully, JS_CompileScript returns a pointer to the
compiled script. Otherwise JS_CompileScript returns NULL, and reports an
error.

Note To compile a script from an external file source rather than passing the actual
script as an argument, use JS_CompileFile instead of JS_CompileScript.

See also JS_CompileFile, JS_CompileUCScript, JS_DestroyScript, JS_DecompileScript,
JS_ExecuteScript, JS_EvaluateScript

JS_CompileScriptForPrincipals
Function. Compiles a security-enabled script for execution.

Syntax JSScript * JS_CompileScriptForPrincipals(JSContext *cx,
JSObject *obj, JSPrincipals *principals, const char *bytes,
size_t length, const char *filename, uintN lineno);

Description JS_CompileScriptForPrincipals compiles a security-enabled script, bytes,
for execution. The script is associated with a JS object.

principals is a pointer to the JSPrincipals structure that contains the
security information to associate with this script.

bytes is the string containing the text of the script. length indicates the size of
the text version of the script in bytes.

Note To compile a secure script using a Unicode character set, call
JS_CompileUCScriptForPrincipals instead of this function.

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

obj JSObject * Object with which the script is associated.

principals JSPrincipals * Pointer to the structure holding the security information for this script.

bytes const char * String containing the script to compile.

length size_t Size, in bytes, of the script to compile.

filename const char * Name of file or URL containing the script. Used to report filename or URL
in error messages.

lineno uintN Line number. Used to report the offending line in the file or URL if an
error occurs.

Function Definitions

140 JavaScript C Engine API Reference

filename is the name of the file (or URL) containing the script. This
information in included in error messages if an eror occurs during compilation.
Similarly, lineno is used to report the line number of the script or file where an
error occurred during compilation.

If a script compiles successfully, JS_CompileScriptForPrincipals returns a
pointer to the compiled script. Otherwise JS_CompileScriptForPrincipals
returns NULL, and reports an error.

See also JS_CompileFile, JS_CompileUCScript, JS_CompileUCScriptForPrincipals,
JS_DestroyScript, JS_DecompileScript, JS_ExecuteScript, JS_EvaluateScript,
JS_EvaluateScriptForPrincipals

JS_CompileUCScript
Function. Compiles a Unicode-encoded script for execution.

Syntax JSScript * JS_CompileUCScript(JSContext *cx, JSObject *obj,
const jschar *chars, size_t length, const char *filename,
uintN lineno);

Description JS_CompileUCScript compiles a script using a Unicode character set, chars,
for execution. The script is associated with a JS object. chars is the Unicode
string containing the text of the script. length indicates the size of the script in
characters.

filename is the name of the file (or URL) containing the script. This
information in included in error messages if an eror occurs during compilation.
Similarly, lineno is used to report the line number of the script or file where an
error occurred during compilation.

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

obj JSObject * Object with which the script is associated.

chars const jschar * String containing the script to compile.

length size_t Number of Unicode characters in the script to compile.

filename const char * Name of file or URL containing the script. Used to report filename or URL in
error messages.

lineno uintN Line number. Used to report the offending line in the file or URL if an error
occurs.

Chapter 2, JavaScript API Reference 141

Function Definitions

If a script compiles successfully, JS_CompileUCScript returns a pointer to the
compiled script. Otherwise JS_UCCompileScript returns NULL, and reports an
error.

Note To compile a script from an external file source rather than passing the actual
script as an argument, use JS_CompileFile instead of JS_CompileScript.

See also JS_CompileScript, JS_CompileFile, JS_DestroyScript, JS_DecompileScript,
JS_ExecuteScript, JS_EvaluateScript

JS_CompileUCScriptForPrincipals
Function. Compiles a security-enabled, Unicode-encoded script for execution.

Syntax JSScript * JS_CompileUCScriptForPrincipals(JSContext *cx,
JSObject *obj,JSPrincipals *principals, const jschar *chars,
size_t length, const char *filename, uintN lineno);

Description JS_CompileUCScriptForPrincipals compiles a security-enabled script using
a Unicode character set, chars, for execution. The script is associated with a JS
object.

principals is a pointer to the JSPrincipals structure that contains the
security information to associate with this script.

chars is the Unicode string containing the text of the script. length indicates
the size of the script in characters.

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

obj JSObject * Object with which the script is associated.

principals JSPrincipals * Pointer to the structure holding the security information for this script.

chars const jschar * String containing the script to compile.

length size_t Number of Unicode characters in the script to compile.

filename const char * Name of file or URL containing the script. Used to report filename or URL in
error messages.

lineno uintN Line number. Used to report the offending line in the file or URL if an error
occurs.

Function Definitions

142 JavaScript C Engine API Reference

filename is the name of the file (or URL) containing the script. This
information in messages if an eror occurs during compilation. Similarly, lineno
is used to report the line number of the script or file where an error occurred
during compilation.

If a script compiles successfully, JS_CompileUCScriptForPrincipals returns
a pointer to the compiled script. Otherwise
JS_CompileUCScriptForPrincipals returns NULL, and reports an error.

See also JS_CompileScript, JS_CompileScriptForPrincipals, JS_CompileUCScript,
JS_CompileFile, JS_DestroyScript, JS_DecompileScript, JS_ExecuteScript,
JS_EvaluateScript, JS_EvaluateScriptForPrincipals

JS_CompileFile
Function. Compiles a script stored in an external file.

Syntax JSScript * JS_CompileFile(JSContext *cx, JSObject *obj,
const char *filename);

Description JS_CompileFile compiles the text of script in an external file location for
execution by the JS engine.

Note JS_CompileFile is only available if you compile the JS engine with the
JSFILE macro defined.

filename is the name of the file (or URL) containing the script to compile.

If a script compiles successfully, JS_CompileFile returns a pointer to the
compiled script. Otherwise JS_CompileFile returns NULL.

Note To pass a script as an argument to a function rather than having to specify a file
location, use JS_CompileScript instead of JS_CompileFile.

See also JS_CompileScript, JS_DestroyScript, JS_DecompileScript, JS_ExecuteScript,
JS_EvaluateScript

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

obj JSObject * Object with which the script is associated.

filename const char * Name of file or URL containing the script to compile.

Chapter 2, JavaScript API Reference 143

Function Definitions

JS_NewScriptObject
Function. Creates a new object and associates a script with it.

Syntax JSObject * JS_NewScriptObject(JSContext *cx, JSScript *script);

Description JS_NewScriptObject creates a new object, assigns script to the object, and
sets the script’s object to the newly created object. Object creation occurs in a
specified context, cx.

On success, JS_NewScriptObject returns a pointer to the newly created
object. On failure, it returns NULL.

See also JS_CompileScript, JS_DestroyScript, JS_DecompileScript, JS_ExecuteScript,
JS_EvaluateScript

JS_DestroyScript
Function. Frees a compiled script when no longer needed.

Syntax void) JS_DestroyScript(JSContext *cx, JSScript *script);

Description JS_DestroyScript destroys the compiled script object, script, thereby
freeing the space allocated to it for other purposes. Generally, after you
compile a script you do not want to call JS_DestroyScript until you no
longer need to use the script. Othewise you will have to recompile the script to
use it again.

See also JS_CompileScript, JS_CompileFile, JS_DecompileScript, JS_ExecuteScript,
JS_EvaluateScript

JS_CompileFunction
Function. Creates a JS function from a text string.

Syntax JSFunction * JS_CompileFunction(JSContext *cx, JSObject *obj,

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

script JSScript * Compiled script to destroy.

Function Definitions

144 JavaScript C Engine API Reference

const char *name, uintN nargs, const char **argnames,
const char *bytes, size_t length, const char *filename,
uintN lineno);

Description JS_CompileFunction compiles a function from a text string, bytes, and
associated it with a JS object, obj.

name is the name to assign to the newly created function. nargs is the number
of arguments the function takes, and argnames is a pointer to an array of
names to assign each argument. The number of argument names should match
the number of arguments specified in nargs.

bytes is the string containing the text of the function. length indicates the size
of the text version of the function in bytes.

filename is the name of the file (or URL) containing the function. This
information in messages if an eror occurs during compilation. Similarly, lineno
is used to report the line number of the function or file where an error occurred
during compilation.

If a function compiles successfully, JS_CompileFunction returns a pointer to
the function. Otherwise JS_CompileFunction returns NULL.

See also JSFUN_BOUND_METHOD, JSFUN_GLOBAL_PARENT, JS_ValueToFunction,
JS_NewFunction, JS_GetFunctionObject, JS_DefineFunctions,
JS_DefineFunction, JS_DecompileFunction, JS_DecompileFunctionBody,
JS_CallFunction, JS_CallFunctionName, JS_CallFunctionValue,
JS_SetBranchCallback

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

obj JSObject * Object with which the function is associated.

name const char * Name to assign the newly compiled function.

nargs uintN Number of arguments to pass to the function.

argnames const char ** Names to assign to the arguments passed to the function.

bytes const char * String containing the function to compile.

length size_t Size, in bytes, of the function to compile.

filename const char * Name of file or URL containing the function. Used to report filename or URL in
error messages.

lineno uintN Line number. Used to report the offending line in the file or URL if an error
occurs.

Chapter 2, JavaScript API Reference 145

Function Definitions

JS_CompileFunctionForPrincipals
Function. Creates a security-enabled JS function from a text string.

Syntax JSFunction * JS_CompileFunctionForPrincipals(JSContext *cx,
JSObject *obj, JSPrincipals *principals, const char *name,
uintN nargs, const char **argnames, const char *bytes,
size_t length, const char *filename, uintN lineno);

Description JS_CompileFunctionForPrincipals compiles a security-enabled function
from a text string, bytes, and associated it with a JS object, obj.

principals is a pointer to the JSPrincipals structure that contains the
security information to associate with this function.

name is the name to assign to the newly created function. nargs is the number
of arguments the function takes, and argnames is a pointer to an array of
names to assign each argument. The number of argument names should match
the number of arguments specified in nargs.

bytes is the string containing the text of the function. length indicates the size
of the text version of the function in bytes.

filename is the name of the file (or URL) containing the function. This
information in messages if an eror occurs during compilation. Similarly, lineno
is used to report the line number of the function or file where an error occurred
during compilation.

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

obj JSObject * Object with which the function is associated.

principals JSPrincipals * Pointer to the structure holding the security information for this function.

name const char * Name to assign the newly compiled function.

nargs uintN Number of arguments to pass to the function.

argnames const char ** Names to assign to the arguments passed to the function.

bytes const char * String containing the function to compile.

length size_t Size, in bytes, of the function to compile.

filename const char * Name of file or URL containing the function. Used to report filename or
URL in error messages.

lineno uintN Line number. Used to report the offending line in the file or URL if an
error occurs.

Function Definitions

146 JavaScript C Engine API Reference

If a function compiles successfully, JS_CompileFunctionForPrincipals
returns a pointer to the function. Otherwise
JS_CompileFunctionForPrincipals returns NULL.

See also JSFUN_BOUND_METHOD, JSFUN_GLOBAL_PARENT, JS_ValueToFunction,
JS_NewFunction, JS_GetFunctionObject, JS_DefineFunctions,
JS_DefineFunction, JS_CompileFunction, JS_CompileUCFunction,
JS_CompileUCFunctionForPrincipals, JS_DecompileFunction,
JS_DecompileFunctionBody, JS_CallFunction, JS_CallFunctionName,
JS_CallFunctionValue

JS_CompileUCFunction
Function. Creates a JS function from a Unicode-encoded character string.

Syntax JSFunction * JS_CompileUCFunction(JSContext *cx, JSObject *obj,
const char *name, uintN nargs, const char **argnames,
const jschar *chars, size_t length, const char *filename,
uintN lineno);

Description JS_CompileUCFunction compiles a function from a Unicode-encoded
character string, chars, and associated it with a JS object, obj.

name is the name to assign to the newly created function. nargs is the number
of arguments the function takes, and argnames is a pointer to an array of
names to assign each argument. The number of argument names should match
the number of arguments specified in nargs.

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

obj JSObject * Object with which the function is associated.

name const char * Name to assign the newly compiled function.

nargs uintN Number of arguments to pass to the function.

argnames const char ** Names to assign to the arguments passed to the function.

chars const jschar * Unicode string containing the function to compile.

length size_t Size, in Unicode characters, of the function to compile.

filename const char * Name of file or URL containing the function. Used to report filename or URL
in error messages.

lineno uintN Line number. Used to report the offending line in the file or URL if an error
occurs.

Chapter 2, JavaScript API Reference 147

Function Definitions

chars is the Unicode-encoded string containing the function. length indicates
the size of the function in Unicode characters.

filename is the name of the file (or URL) containing the function. This
information in messages if an eror occurs during compilation. Similarly, lineno
is used to report the line number of the function or file where an error occurred
during compilation.

If a function compiles successfully, JS_CompileUCFunction returns a pointer
to the function. Otherwise JS_CompileUCFunction returns NULL.

See also JS_ValueToFunction, JS_NewFunction, JS_GetFunctionObject,
JS_DefineFunctions, JS_DefineFunction, JS_CompileFunction,
JS_DecompileFunction, JS_DecompileFunctionBody, JS_CallFunction,
JS_CallFunctionName, JS_CallFunctionValue, JS_SetBranchCallback

JS_CompileUCFunctionForPrincipals
Function. Creates a JS function with security informtion from a Unicode-
encoded character string.

Syntax JSFunction * JS_CompileUCFunctionForPrincipals(JSContext *cx,
JSObject *obj, JSPrincipals *principals, const char *name,
uintN nargs, const char **argnames, const jschar *chars,
size_t length, const char *filename, uintN lineno);

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

obj JSObject * Object with which the function is associated.

principals JSPrincipals * Pointer to the structure holding the security information for this function.

name const char * Name to assign the newly compiled function.

nargs uintN Number of arguments to pass to the function.

argnames const char ** Names to assign to the arguments passed to the function.

chars const jschar * Unicode string containing the function to compile.

length size_t Size, in Unicode characters, of the function to compile.

filename const char * Name of file or URL containing the function. Used to report filename or
URL in error messages.

lineno uintN Line number. Used to report the offending line in the file or URL if an
error occurs.

Function Definitions

148 JavaScript C Engine API Reference

Description JS_CompileUCFunctionForPrincipals compiles a security-enabled function
from a Unicode-encoded character string, chars, and associated it with a JS
object, obj.

principals is a pointer to the JSPrincipals structure that contains the
security information to associate with this function.

name is the name to assign to the newly created function. nargs is the number
of arguments the function takes, and argnames is a pointer to an array of
names to assign each argument. The number of argument names should match
the number of arguments specified in nargs.

chars is the Unicode-encoded string containing the function. length indicates
the size of the function in Unicode characters.

filename is the name of the file (or URL) containing the function. This
information is included in messages if an eror occurs during compilation.
Similarly, lineno is used to report the line number of the function or file where
an error occurred during compilation.

If a function compiles successfully, JS_CompileUCFunctionForPrincipals
returns a pointer to the function. Otherwise
JS_CompileUCFunctionForPrincipals returns NULL.

See also JS_ValueToFunction, JS_NewFunction, JS_GetFunctionObject,
JS_DefineFunctions, JS_DefineFunction, JS_CompileUCFunction,
JS_DecompileFunction, JS_DecompileFunctionBody, JS_CallFunction,
JS_CallFunctionName, JS_CallFunctionValue

JS_DecompileScript
Function. Creates the source code of a script from a script’s compiled form.

Syntax JSString * JS_DecompileScript(JSContext *cx, JSScript *script,
const char *name, uintN indent);

Argument Type Description

cx JSContext * Pointer to a JS context.

script JSScript * Script to decompile.

name const char * Name to assign to the decompiled script.

indent uintN Number of spaces to use for indented code.

Chapter 2, JavaScript API Reference 149

Function Definitions

Description JS_DecompileScript creates the source code version of a script from a script’s
compiled form, script. name is the name you assign to the text version of the
script; it is used only for debugging the source code version produced by this
function.

If successful, JS_DecompileScript returns a string containing the source code
of the script. Otherwise, it returns NULL. The source code generated by this
function is accurate but lacks function declarations. In order to make it suitable
for recompiling, you must edit the code to add the function declarations, or call
JS_DecompileFunction on a compiled version of each function to generate
the function declarations.

See also JS_CompileScript, JS_CompileFile, JS_DecompileFunction, JS_DestroyScript,
JS_ExecuteScript, JS_EvaluateScript

JS_DecompileFunction
Function. Generates the complete source code of a function declaration from a
compiled function.

Syntax JSString * JS_DecompileFunction(JSContext *cx, JSFunction *fun,
uintN indent);

Description JS_DecompileFunction generates the complete source code of a function
declaration from a function’s compiled form, fun.

If successful, JS_DecompileFunction returns a string containing the text of the
function. Otherwise, it returns NULL.

If you decompile a function that does not make a native C call, then the text
created by JS_DecompileFunction is a complete function declaration suitable
for re-parsing. If you decompile a function that makes a native C call, the body
of the function contains the text “[native code]” and cannot be re-parsed.

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

fun JSFunction * Function to decompile.

indent uintN Number of spaces to use for indented code.

Function Definitions

150 JavaScript C Engine API Reference

See also JS_ValueToFunction, JS_NewFunction, JS_GetFunctionObject,
JS_DefineFunctions, JS_DefineFunction, JS_CompileFunction,
JS_DecompileFunctionBody, JS_CallFunction, JS_CallFunctionName,
JS_CallFunctionValue, JS_SetBranchCallback

JS_DecompileFunctionBody
Function. Generates the source code representing the body of a function,
minus the function keyword, name, parameters, and braces.

Syntax JSString * JS_DecompileFunctionBody(JSContext *cx,
JSFunction *fun, uintN indent);

Description JS_DecompileFunctionBody generates the source code of a function’s body,
minus the function keyword, name, parameters, and braces, from a function’s
compiled form, fun.

If successful, JS_DecompileFunctionBody returns a string containing the
source code of the function body. Otherwise, it returns NULL.

The source code generated by this function is accurate but unadorned and is
not suitable for recompilation without providing the function’s declaration. If
you decompile a function that makes a native C call, the body of the function
only contains the text “[native code]”.

Note To decompile a complete function, including its body and declaration, call
JS_DecompileFunction instead of JS_DecompileFunctionBody.

See also JS_ValueToFunction, JS_NewFunction, JS_GetFunctionObject,
JS_DefineFunctions, JS_DefineFunction, JS_CompileFunction,
JS_DecompileFunction, JS_CallFunction, JS_CallFunctionName,
JS_CallFunctionValue, JS_SetBranchCallback

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

fun JSFunction * Function to decompile.

indent uintN Number of spaces to use for indented code.

Chapter 2, JavaScript API Reference 151

Function Definitions

JS_ExecuteScript
Function. Executes a compiled script.

Syntax JSBool JS_ExecuteScript(JSContext *cx, JSObject *obj,
JSScript *script, jsval *rval);

Description JS_ExecuteScript executes a previously compiled script, script. On
successful completion, rval is a pointer to a variable that holds the value from
the last executed expression statement processed in the script.

If a script executes successfully, JS_ExecuteScript returns JS_TRUE.
Otherwise it returns JS_FALSE. On failure, your application should assume that
rval is undefined.

Note To execute an uncompiled script, compile it with JS_CompileScript, and
then call JS_ExecuteScript, or call JS_EvaluateScript to both compile and
execute the script.

See also JS_CompileScript, JS_CompileFile, JS_DestroyScript, JS_DecompileScript,
JS_EvaluateScript

JS_EvaluateScript
Function. Compiles and executes a script.

Syntax JSBool JS_EvaluateScript(JSContext *cx, JSObject *obj,
const char *bytes, uintN length, const char *filename,

Argument Type Description

cx JSContext * JS context in which the script executes.

obj JSObject * Object with which the script is associated.

script JSScript * Previously compiled script to execute.

rval jsval * Pointer to the value from the last executed expression statement processed in the
script.

Function Definitions

152 JavaScript C Engine API Reference

uintN lineno, jsval *rval);

Description JS_EvaluateScript compiles and executes a script associated with a JS
object, obj. On successful completion, rval is a pointer to a variable that holds
the value from the last executed expression statement processed in the script.

bytes is the string containing the text of the script. length indicates the size of
the text version of the script in bytes.

filename is the name of the file (or URL) containing the script. This
information in messages if an eror occurs during compilation. Similarly, lineno
is used to report the line number of the script or file where an error occurred
during compilation.

If a script compiles and executes successfully, JS_EvaluateScript returns
JS_TRUE. Otherwise it returns JS_FALSE. On failure, your application should
assume that rval is undefined.

See also JS_CompileScript, JS_CompileFile, JS_DestroyScript, JS_DecompileScript,
JS_ExecuteScript, JS_EvaluateScriptForPrincipals

JS_EvaluateUCScript
Function. Compiles and executes a Unicode-encoded script.

Syntax JSBool JS_EvaluateUCScript(JSContext *cx, JSObject *obj,
const jschar *chars, uintN length, const char *filename,

Argument Type Description

cx JSContext * JS context in which the script compiles and executes.

obj JSObject * Object with which the script is associated.

bytes const char * String containing the script to compile and execute.

length size_t Size, in bytes, of the script to compile and execute.

filename const char * Name of file or URL containing the script. Used to report filename or URL in
error messages.

lineno uintN Line number. Used to report the offending line in the file or URL if an error
occurs.

rval jsval * Pointer to the value from the last executed expression statement processed in
the script.

Chapter 2, JavaScript API Reference 153

Function Definitions

uintN lineno, jsval *rval);

Description JS_EvaluateUCScript compiles and executes a script associated with a JS
object, obj. On successful completion, rval is a pointer to a variable that holds
the value from the last executed expression statement processed in the script.

chars is the Unicode character array containing the text of the script. length
indicates the size of the text version of the script in Unicode characters.

filename is the name of the file (or URL) containing the script. This
information is included in messages if an eror occurs during compilation.
Similarly, lineno is used to report the line number of the script or file where an
error occurred during compilation.

If a script compiles and executes successfully, JS_EvaluateUCScript returns
JS_TRUE. Otherwise it returns JS_FALSE. On failure, your application should
assume that rval is undefined.

See also JS_CompileScript, JS_CompileFile, JS_DestroyScript, JS_DecompileScript,
JS_ExecuteScript, JS_EvaluateScript, JS_EvaluateScriptForPrincipals,
JS_EvaluateUCScriptForPrincipals

JS_EvaluateScriptForPrincipals
Function. Compiles and executes a security-enabled script.

Syntax JSBool JS_EvaluateScriptForPrincipals(JSContext *cx,
JSObject *obj, JSPrincipals *principals, const char *bytes,
uintN length, const char *filename, uintN lineno,

Argument Type Description

cx JSContext * JS context in which the script compiles and executes.

obj JSObject * Object with which the script is associated.

chars const jschar * Unicode character array ontaining the script to compile and execute.

length uintN Size, in Unicode characters, of the script to compile and execute.

filename const char * Name of file or URL containing the script. Used to report filename or URL in
error messages.

lineno uintN Line number. Used to report the offending line in the file or URL if an error
occurs.

rval jsval * Pointer to the value from the last executed expression statement processed
in the script.

Function Definitions

154 JavaScript C Engine API Reference

jsval *rval);

Description JS_EvaluateScriptForPrincipals compiles and executes a script associated
with a JS object, obj. On successful completion, rval is a pointer to a variable
that holds the value from the last executed expression statement processed in
the script.

principals is a pointer to the JSPrincipals structure that contains the
security information to associate with this script.

bytes is the string containing the text of the script. length indicates the size of
the text version of the script in bytes.

filename is the name of the file (or URL) containing the script. This
information in messages if an eror occurs during compilation. Similarly, lineno
is used to report the line number of the script or file where an error occurred
during compilation.

If a secure script compiles and executes successfully,
JS_EvaluateScriptForPrincipals returns JS_TRUE. Otherwise it returns
JS_FALSE. On failure, your application should assume that rval is undefined.

See also JS_CompileScript, JS_CompileFile, JS_DestroyScript, JS_DecompileScript,
JS_ExecuteScript, JS_EvaluateScript, JS_EvaluateUCScript,
JS_EvaluateUCScriptForPrincipals

Argument Type Description

cx JSContext * JS context in which the script compiles and executes.

obj JSObject * Object with which the script is associated.

principals JSPrincipals * Pointer to the structure holding the security information for this script.

bytes const char * String containing the script to compile and execute.

length size_t Size, in bytes, of the script to compile and execute.

filename const char * Name of file or URL containing the script. Used to report filename or URL
in error messages.

lineno uintN Line number. Used to report the offending line in the file or URL if an
error occurs.

rval jsval * Pointer to the value from the last executed expression statement
processed in the script.

Chapter 2, JavaScript API Reference 155

Function Definitions

JS_EvaluateUCScriptForPrincipals
Function. Compiles and executes a security-enabled,Unicode-encoded
character script.

Syntax JSBool JS_EvaluateScriptUCForPrincipals(JSContext *cx,
JSObject *obj, JSPrincipals *principals, const jschar *chars,
uintN length, const char *filename, uintN lineno,
jsval *rval);

Description JS_EvaluateUCScriptForPrincipals compiles and executes a Unicode-
encoded script associated with a JS object, obj. On successful completion,
rval is a pointer to a variable that holds the value from the last executed
expression statement processed in the script.

principals is a pointer to the JSPrincipals structure that contains the
security information to associate with this script.

chars is the Unicode-encoded character array containing the text of the script.
length indicates the number of characters in the text version of the script.

filename is the name of the file (or URL) containing the script. This
information is included in messages if an eror occurs during compilation.
Similarly, lineno is used to report the line number of the script or file where an
error occurred during compilation.

Argument Type Description

cx JSContext * JS context in which the script compiles and executes.

obj JSObject * Object with which the script is associated.

principals JSPrincipals * Pointer to the structure holding the security information for this script.

chars const jschar * Unicode-encoded character array containing the script to compile and
execute.

length uintN Size, in Unicode characters, of the script to compile and execute.

filename const char * Name of file or URL containing the script. Used to report filename or URL
in error messages.

lineno uintN Line number. Used to report the offending line in the file or URL if an
error occurs.

rval jsval * Pointer to the value from the last executed expression statement
processed in the script.

Function Definitions

156 JavaScript C Engine API Reference

If a secure script compiles and executes successfully,
JS_EvaluateUCScriptForPrincipals returns JS_TRUE. Otherwise it returns
JS_FALSE. On failure, your application should assume that rval is undefined.

See also JS_CompileScript, JS_CompileFile, JS_DestroyScript, JS_DecompileScript,
JS_ExecuteScript, JS_EvaluateScript, JS_EvaluateUCScript,
JS_EvaluateScriptForPrincipals

JS_CallFunction
Function. Deprecated. Calls a specified function.

Syntax JSBool JS_CallFunction(JSContext *cx, JSObject *obj,
JSFunction *fun, uintN argc, jsval *argv, jsval *rval);

Description JS_CallFunction calls a specified function, fun, on an object, obj. In terns of
function execution, the object is treated as this. This call is deprecated. It
continues to be supported for existing applications that currently use it, but
future versions of the JS engine may no longer support it.

Note To call a method on an object, use JS_CallFunctionName.

In argc, indicate the number of arguments passed to the function. In argv,
pass a pointer to the actual argument values to use. There should be one value
for each argument you pass to the function; the number of arguments you pass
may be different from the number of arguments defined for the function.by the
function.

rval is a pointer to a variable that will hold the function’s return value, if any,
on successful function execution.

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

obj JSObject * The “current” object on which the function operates; the object specified here
is “this” when the function executes.

*fun JSFunction * Pointer to the function to call.

argc uintN Number of arguments you are passing to the function.

argv jsval * Pointer to the array of argument values to pass to the function.

rval jsval * Pointer to a variable to hold the return value from the function call.

Chapter 2, JavaScript API Reference 157

Function Definitions

If the called function executes successfully, JS_CallFunction returns
JS_TRUE. Otherwise it returns JS_FALSE, and rval is undefined.

See also JS_ValueToFunction, JS_NewFunction, JS_GetFunctionObject,
JS_DefineFunctions, JS_DefineFunction, JS_CompileFunction,
JS_DecompileFunction, JS_DecompileFunctionBody, JS_CallFunctionName,
JS_CallFunctionValue, JS_SetBranchCallback

JS_CallFunctionName
Function. Deprecated. Calls a function-valued property belonging to an object.

Syntax JSBool JS_CallFunctionName(JSContext *cx, JSObject *obj,
const char *name, uintN argc, jsval *argv, jsval *rval);

Description JS_CallFunctionName executes a function-valued property, name, belonging
to a specified JS object, obj. This call is deprecated. It continues to be
supported for existing applications that currently use it, but future versions of
the JS engine may no longer support it.

Note To call a function stored in a jsval, use JS_CallFunctionValue.

In argc, indicate the number of arguments passed to the function. In argv,
pass a pointer to the actual argument values to use. There should be one value
for each argument you pass to the function; the number of arguments you pass
may be different from the number of arguments defined for the function.by the
function.

rval is a pointer to a variable that will hold the function’s return value, if any,
on successful function execution.

If the called function executes successfully, JS_CallFunctionName returns
JS_TRUE. Otherwise it returns JS_FALSE, and rval is undefined.

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

obj JSObject * The object containing the method to execute.

name const char * The name of the function to execute.

argc uintN Number of arguments you are passing to the function.

argv jsval * Pointer to the array of argument values to pass to the function.

rval jsval * Pointer to a variable to hold the return value from the function call.

Function Definitions

158 JavaScript C Engine API Reference

See also JS_ValueToFunction, JS_NewFunction, JS_GetFunctionObject,
JS_DefineFunctions, JS_DefineFunction, JS_CompileFunction,
JS_DecompileFunction, JS_DecompileFunctionBody, JS_CallFunction,
JS_CallFunctionValue, JS_SetBranchCallback

JS_CallFunctionValue
Function. Deprecated. Calls a function referenced by a jsval.

Syntax JSBool JS_CallFunctionValue(JSContext *cx, JSObject *obj,
jsval fval, uintN argc, jsval *argv, jsval *rval);

Description JS_CallFunctionValue executes a function referenced by a jsval, fval, on
an object, obj. In terns of function execution, the object is treated as this. This
call is deprecated. It continues to be supported for existing applications that
currently use it, but future versions of the JS engine may no longer support it.

In argc, indicate the number of arguments passed to the function. In argv,
pass a pointer to the actual argument values to use. There should be one value
for each argument you pass to the function; the number of arguments you pass
may be different from the number of arguments defined for the function.by the
function.

rval is a pointer to a variable that will hold the function’s return value, if any,
on successful function execution.

If the called function executes successfully, JS_CallFunctionValue returns
JS_TRUE. Otherwise it returns JS_FALSE, and rval is undefined.

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

obj JSObject * The “current” object on which the function operates; the object specified here
is “this” when the function executes.

fval jsval The jsval containing the function to execute.

argc uintN Number of arguments you are passing to the function.

argv jsval * Pointer to the array of argument values to pass to the function.

rval jsval * Pointer to a variable to hold the return value from the function call.

Chapter 2, JavaScript API Reference 159

Function Definitions

See also JS_ValueToFunction, JS_NewFunction, JS_GetFunctionObject,
JS_DefineFunctions, JS_DefineFunction, JS_CompileFunction,
JS_DecompileFunction, JS_DecompileFunctionBody, JS_CallFunction,
JS_CallFunctionName, JS_SetBranchCallback

JS_SetBranchCallback
Function. Specifies a callback function that is automatically called when a script
branches backward during execution, when a function returns, and at the end
of the script.

Syntax JSBranchCallback JS_SetBranchCallback(JSContext *cx,
JSBranchCallback cb);

Description JS_SetBranchCallback specifies a callback function that is automatically
called when a script branches backward during execution, when a function
returns, and at the end of the script. One typical use for a callback is in a client
application to enable a user to abort an operation.

JS_IsRunning
Function. Indicates whether or not a script or function is currently executing in
a given context.

Syntax JSBool JS_IsRunning(JSContext *cx);

Description JS_IsRunning determines if a script or function is currently executing in a
specified context, cx. If a script is executing, JS_IsRunning returns JS_TRUE.
Otherwise it returns JS_FALSE.

See also JS_Init, JS_Finish, JS_NewContext, JS_DestroyContext, JS_GetRuntime,
JS_ContextIterator,

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

cb JSBranchCallback The object that encapsulates the callback function.

Function Definitions

160 JavaScript C Engine API Reference

JS_IsConstructing
Function. Indicates the current constructor status of a given context.

Syntax JSBool JS_IsConstructing(JSContext *cx);

Description JS_IsConstructing determines whether or not a function constructor is in
action within a given context, cx. If it is, JS_IsConstructing returns JS_TRUE.
Otherwise it returns JS_FALSE.

JS_NewString
Function. Allocates a new JS string.

Syntax JSString * JS_NewString(JSContext *cx, char *bytes,
size_t length);

Description JS_NewString uses the memory starting at bytes and ending at bytes +
length as storage for the JS string it returns. The char array, bytes, must be
allocated on the heap using JS_malloc. This means that your application is
permitting the JS engine to handle this memory region. Your application should
not free or otherwise manipulate this region of memory.

Using JS_NewString is analogous to assigning char * variables in C, and can
save needless copying of data. If successful, JS_NewString returns a pointer to
the JS string. Otherwise it returns NULL.

See also JS_GetEmptyStringValue, JS_ValueToString, JS_ConvertValue, JS_NewDouble,
JS_NewObject, JS_NewArrayObject, JS_NewFunction, JS_NewUCString,
JS_NewStringCopyN, JS_NewUCStringCopyN, JS_NewStringCopyZ,
JS_NewUCStringCopyZ, JS_InternString, JS_InternUCString, JS_InternUCStringN,
JS_GetStringChars, JS_GetStringBytes, JS_GetStringLength, JS_CompareStrings,
JS_malloc

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

bytes char * Pointer to the byte array containing the text for the JS string to create.

length size_t Number of characters in the text string.

Chapter 2, JavaScript API Reference 161

Function Definitions

JS_NewUCString
Function. Allocates a new JS Unicode-encoded string.

Syntax JSString * JS_NewUCString(JSContext *cx, jschar *chars,
size_t length);

Description JS_NewUCString uses the memory starting at chars and ending at chars +
length as storage for the Unicode-encoded JS string it returns. This means that
your application is permitting the JS engine to handle this memory region. Your
application should not free or otherwise manipulate this region of memory.

Using JS_NewUCString is analogous to assigning char * variables in C, and
can save needless copying of data. If successful, JS_NewUCString returns a
pointer to the JS string. Otherwise it returns NULL.

See also JS_GetEmptyStringValue, JS_ValueToString, JS_ConvertValue, JS_NewDouble,
JS_NewObject, JS_NewArrayObject, JS_NewFunction, JS_NewString,
JS_NewStringCopyN, JS_NewUCStringCopyN, JS_NewStringCopyZ,
JS_NewUCStringCopyZ, JS_InternString, JS_InternUCString, JS_InternUCStringN,
JS_GetStringChars, JS_GetStringBytes, JS_GetStringLength, JS_CompareStrings,
JS_malloc

JS_NewStringCopyN
Function. Creates a new JS string of a specified size.

Syntax JSString * JS_NewStringCopyN(JSContext *cx, const char *s,
size_t n);

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

chars jschar * Pointer to the Unicode-encoded character array containing the text for the JS
string to create.

length size_t Number of characters in the text string.

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

s const char * Pointer to the character array containing the text for the JS string to create.

n size_t Maximum number of characters to copy from s into the JS string.

Function Definitions

162 JavaScript C Engine API Reference

Description JS_NewStringCopyN allocates space for a JS string and its underlying storage,
and copies as many characters from a C character array, s, as possible, up to n
bytes, into the new JS string. If the number of bytes in s is greater than the
number of characters specified in n, the new JS string contains a truncated
version of the original string. If the number of characters in s is less than the
number of bytes specified in n, the new JS string is padded with nulls to the
specified length.

You can use JS_NewStringCopyN to copy binary data, which may contain
ASCII 0 characters. You can also use this function when you want to copy only
a certain portion of a C string into a JS string.

If the allocation is successful, JS_NewStringCopyN returns a pointer to the JS
string. Otherwise it returns NULL.

See also JS_GetEmptyStringValue, JS_ValueToString, JS_ConvertValue, JS_NewDouble,
JS_NewObject, JS_NewArrayObject, JS_NewFunction, JS_NewString,
JS_NewUCString, JS_NewUCStringCopyN, JS_NewStringCopyZ,
JS_NewUCStringCopyZ, JS_InternString, JS_InternUCString, JS_InternUCStringN,
JS_GetStringChars, JS_GetStringBytes, JS_GetStringLength, JS_CompareStrings,
JS_malloc

JS_NewUCStringCopyN
Function. Creates a new Unicode-encoded JS string of a specified size.

Syntax JSString * JS_NewUCStringCopyN(JSContext *cx, const jschar *s,
size_t n);

Description JS_NewUCStringCopyN allocates space for a JS string and its underlying
storage, and copies as many characters from a Unicode-encoded character
array, s, as possible, up to n characters, into the new JS string. If the number of
characters in s is greater than the number of characters specified in n, the new

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

s const jschar * Pointer to the Unicode character array containing the text for the JS string to
create.

n size_t Maximum number of Unicode characters to copy from s into the JS string.

Chapter 2, JavaScript API Reference 163

Function Definitions

JS string contains a truncated version of the original string. If the number of
characters in s is less than the number of bytes specified in n, the new JS string
is padded with nulls to the specified length.

You can use JS_NewUCStringCopyN to copy binary data, which may contain
ASCII 0 characters. You can also use this function when you want to copy only
a certain portion of a Unicode-encoded string into a JS string.

If the allocation is successful, JS_NewUCStringCopyN returns a pointer to the JS
string. Otherwise it returns NULL.

See also JS_GetEmptyStringValue, JS_ValueToString, JS_ConvertValue, JS_NewDouble,
JS_NewObject, JS_NewArrayObject, JS_NewFunction, JS_NewString,
JS_NewUCString, JS_NewStringCopyN, JS_NewStringCopyZ,
JS_NewUCStringCopyZ, JS_InternString, JS_InternUCString, JS_InternUCStringN,
JS_GetStringChars, JS_GetStringBytes, JS_GetStringLength, JS_CompareStrings,
JS_malloc

JS_NewStringCopyZ
Function. Creates a new JS string and ensures that the resulting string is null-
terminated.

Syntax JSString * JS_NewStringCopyZ(JSContext *cx, const char *s);

Description JS_NewStringCopyZ allocates space for a new JS string and its underlying
storage, and then copies the contents of a C character array, s, into the new
string. The new JS string is guaranteed to be null-terminated.

If the allocation is successful, JS_NewStringCopyZ returns a pointer to the JS
string. Otherwise it returns an empty string.

See also JS_GetEmptyStringValue, JS_ValueToString, JS_ConvertValue, JS_NewDouble,
JS_NewObject, JS_NewArrayObject, JS_NewFunction, JS_NewString,
JS_NewUCString, JS_NewStringCopyN, JS_NewUCStringCopyN,
JS_NewUCStringCopyZ, JS_InternString, JS_InternUCString, JS_InternUCStringN,
JS_GetStringChars, JS_GetStringBytes, JS_GetStringLength, JS_CompareStrings,
JS_malloc

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

s const char * Pointer to the character array containing the text for the JS string to create.

Function Definitions

164 JavaScript C Engine API Reference

JS_NewUCStringCopyZ
Function. Creates a new Unicode-encoded JS string and ensures that the
resulting string is null-terminated.

Syntax JSString * JS_NewUCStringCopyZ(JSContext *cx, const jschar *s);

Description JS_NewUCStringCopyZ allocates space for a new, Unicode-encoded JS string
and its underlying storage, and then copies the contents of a character array, s,
into the new string. The new JS string is guaranteed to be null-terminated.

If the allocation is successful, JS_NewUCStringCopyZ returns a pointer to the JS
string. Otherwise it returns an empty string.

See also JS_GetEmptyStringValue, JS_ValueToString, JS_ConvertValue, JS_NewDouble,
JS_NewObject, JS_NewArrayObject, JS_NewFunction, JS_NewString,
JS_NewUCString, JS_NewStringCopyN, JS_NewUCStringCopyN,
JS_NewStringCopyZ, JS_InternString, JS_InternUCString, JS_InternUCStringN,
JS_GetStringChars, JS_GetStringBytes, JS_GetStringLength, JS_CompareStrings,
JS_malloc

JS_InternString
Function. Creates a new, static JS string whose value is automatically shared by
all string literals that are identical.

Syntax JSString * JS_InternString(JSContext *cx, const char *s);

Description JS_InternString creates a new JS string with a specified value, s, if it does
not already exist. The char array, s, must be allocated on the heap. The JS
string is an interned, Unicode version of s, meaning that independent C
variables that define a matching string will, when translated to a JS string value

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

s const jschar * Pointer to the character array containing the text for the JS string to create.

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

s const char * Pointer to the character array containing the text for the JS string to create.

Chapter 2, JavaScript API Reference 165

Function Definitions

using JS_InternString, share the same internal copy of the JS string, rather
than define their own, separate copies in memory. Use this function to save
space allocation on the heap.

If it creates or reuses an interned string, JS_InternString returns a pointer to
the string. Otherwise, on error, it returns NULL.

See also JS_GetEmptyStringValue, JS_ValueToString, JS_ConvertValue, JS_NewDouble,
JS_NewObject, JS_NewArrayObject, JS_NewFunction, JS_NewString,
JS_NewUCString, JS_NewStringCopyN, JS_NewUCStringCopyN,
JS_NewStringCopyZ, JS_NewUCStringCopyZ, JS_InternUCString,
JS_InternUCStringN, JS_GetStringChars, JS_GetStringBytes, JS_GetStringLength,
JS_CompareStrings

JS_InternUCString
Function. Creates a new, static, Unicode-encoded JS string whose value is
automatically shared by all string literals that are identical.

Syntax JSString * JS_InternUCString(JSContext *cx, const jschar *s);

Description JS_InternUCString creates a new, Unicode-encoded JS string with a specified
value, s, if it does not already exist. The char array, s, must be allocated on the
heap. The JS string is an interned, Unicode version of s, meaning that
independent C variables that define a matching string will, when translated to a
JS string value using JS_InternUCString, share the same internal copy of the
JS string, rather than define their own, separate copies in memory. Use this
function to save space allocation on the heap.

If it creates or reuses an interned string, JS_InternUCString returns a pointer
to the string. Otherwise, on error, it returns NULL.

See also JS_GetEmptyStringValue, JS_ValueToString, JS_ConvertValue, JS_NewDouble,
JS_NewObject, JS_NewArrayObject, JS_NewFunction, JS_NewString,
JS_NewUCString, JS_NewStringCopyN, JS_NewUCStringCopyN,
JS_NewStringCopyZ, JS_NewUCStringCopyZ, JS_InternString,
JS_InternUCStringN, JS_GetStringChars, JS_GetStringBytes, JS_GetStringLength,
JS_CompareStrings

Function Definitions

166 JavaScript C Engine API Reference

JS_InternUCStringN
Function. Creates a new, static, Unicode-encoded, JS string of a specified size
whose value is automatically shared by all string literals that are identical.

Syntax JSString * JS_InternUCStringN(JSContext *cx, const jschar *s,
size_t length);

Description JS_InternUCStringN creates a new, Unicode-encoded JS string with a
specified value, s, up to length characters in size, if it does not already exist. If
the number of characters in s is greater than the number of characters specified
in length, the new JS string contains a truncated version of the original string.
If the number of characters in s is less than the number of bytes specified in
length, the new JS string is padded with nulls to the specified length.

The char array, s, must be allocated on the heap. The JS string is an interned,
Unicode version of s, meaning that independent C variables that define a
matching string will, when translated to a JS string value using
JS_InternUCStringN, share the same internal copy of the JS string, rather than
define their own, separate copies in memory. Use this function to save space
allocation on the heap.

If it creates or reuses an interned string, JS_InternUCStringN returns a
pointer to the string. Otherwise, on error, it returns NULL.

See also JS_GetEmptyStringValue, JS_ValueToString, JS_ConvertValue, JS_NewDouble,
JS_NewObject, JS_NewArrayObject, JS_NewFunction, JS_NewString,
JS_NewUCString, JS_NewStringCopyN, JS_NewUCStringCopyN,
JS_NewStringCopyZ, JS_NewUCStringCopyZ, JS_InternString, JS_InternUCString,
JS_GetStringChars, JS_GetStringBytes, JS_GetStringLength, JS_CompareStrings

JS_GetStringChars
Function. Retrieves the pointer to a specified string.

Syntax jschar * JS_GetStringChars(JSString *str);

Description JS_GetStringChars provides a Unicode-enabled pointer to a JS string, str.

Chapter 2, JavaScript API Reference 167

Function Definitions

See also JS_GetEmptyStringValue, JS_ValueToString, JS_ConvertValue, JS_NewDouble,
JS_NewObject, JS_NewArrayObject, JS_NewFunction, JS_NewString,
JS_NewUCString, JS_NewStringCopyN, JS_NewUCStringCopyN,
JS_NewStringCopyZ, JS_NewUCStringCopyZ, JS_InternString, JS_InternUCString,
JS_InternUCStringN, JS_GetStringBytes, JS_GetStringLength, JS_CompareStrings

JS_GetStringBytes
Function. Translates a JS string into a C character array.

Syntax char * JS_GetStringBytes(JSString *str);

Description JS_GetStringBytes translates a specified JS string, str, into a C character
array. If successful, JS_GetStringBytes returns a pointer to the array. The
array is automatically freed when str is finalized by the JavaScript garbage
collection mechanism.

See also JS_GetEmptyStringValue, JS_ValueToString, JS_ConvertValue, JS_NewDouble,
JS_NewObject, JS_NewArrayObject, JS_NewFunction, JS_NewString,
JS_NewStringCopyN, JS_NewStringCopyZ, JS_InternString, JS_GetStringLength,
JS_CompareStrings

JS_GetStringLength
Function. Determines the length, in characters, of a JS string.

Syntax size_t JS_GetStringLength(JSString *str);

Description JS_GetStringLength reports the length, in characters, of a specified JS string,
str. Note that JS strings are stored in Unicode format, so
JS_GetStringLength does not report the number of bytes allocated to a
string, but the number of characters in the string.

See also JS_GetEmptyStringValue, JS_ValueToString, JS_ConvertValue, JS_NewDouble,
JS_NewObject, JS_NewArrayObject, JS_NewFunction, JS_NewString,
JS_NewStringCopyN, JS_NewStringCopyZ, JS_InternString, JS_GetStringBytes,
JS_CompareStrings

Function Definitions

168 JavaScript C Engine API Reference

JS_CompareStrings
Function. Compares two JS strings, and reports the results of the comparison.

Syntax intN JS_CompareStrings(JSString *str1, JSString *str2);

Description JS_CompareStrings compares two JS strings, str1 and str2. If the strings are
identical in content and size, JS_CompareStrings returns 0.

If str1 is greater than str2, either in terms of its internal alphabetic sort order,
or because it is longer in length, JS_CompareStrings returns a positive value.

If str1 is less than str2, either in terms of its internal alphabetic sort order, or
because it is shorter in length, JS_CompareStrings returns a negative value.

See also JS_GetEmptyStringValue, JS_ValueToString, JS_ConvertValue, JS_NewDouble,
JS_NewObject, JS_NewArrayObject, JS_NewFunction, JS_NewString,
JS_NewStringCopyN, JS_NewStringCopyZ, JS_InternString, JS_GetStringBytes,
JS_GetStringLength

JS_ReportError
Function. Creates a formatted error message to pass to a user-defined error
reporting function.

Syntax void JS_ReportError(JSContext *cx, const char *format, ...);

Description JS_ReportError converts a format string and its arguments, format, into an
error message using a sprintf-like conversion routine. The resulting string is
automatically passed to the user-defined error reporting mechanism. That

Argument Type Description

str1 JSString * First string to compare.

str2 JSString * Second string to compare.

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

format const char * Format string to convert into an error message using a standard C sprintf
conversion routine.

... Error message variables to insert into the format string.

Chapter 2, JavaScript API Reference 169

Function Definitions

mechanism might display the error message in a console or dialog box window
(as in Navigator 2.0 and greater), or might write the error message to an error
log file maintained by the application.

Specify an error reporting mechanism for your application using
JS_SetErrorReporter.

See also JS_ReportOutOfMemory, JS_SetErrorReporter

JS_ReportOutOfMemory
Function. Reports a memory allocation error for a specified JS execution
context.

Syntax void JS_ReportOutOfMemory(JSContext *cx);

Description JS_ReportOutOfMemory calls JS_ReportError with a format string set to “out
of memory”. This function is called by the JS engine when a memory allocation
in the JS memory pool fails.

See also JS_ReportError, JS_SetErrorReporter

JS_SetErrorReporter
Function. Specifies the error reporting mechanism for an application.

Syntax JSErrorReporter JS_SetErrorReporter(JSContext *cx,
JSErrorReporter er);

Description JS_SetErrorReporter enables you to define and use your own error
reporting mechanism in your applications. The reporter you define is
automatically passed a JSErrorReport structure when an error occurs and has
been parsed by JS_ReportError.

Argument Type Description

cx JSContext * Pointer to a JS context from which to derive run time information.

er JSErrorReporter The user-defined error reporting function to use in your application.

Function Definitions

170 JavaScript C Engine API Reference

Typically, the error reporting mechanism you define should log the error where
appropriate (such as to a log file), and display an error to the user of your
application. The error you log and display can make use of the information
passed about the error condition in the JSErrorReport structure.

See also JS_ReportError, JS_ReportOutOfMemory, JSErrorReport

