Chapter 1 Overview of the JavaScript C ENginecccccoeevvivinenne. 1

Supported Versions of JAVASCIIPLc.ccviiieiiciie e 1
How D0 YOu USe the ENGINE?coiiiiiiiieiesiiie et e e 2
How Does the Engine Relate to AppliCations?ccccccveveiveesieevi e 2
BUilding the ENQINEooiiiii e 6
What Are the Requirements for Engine Embedding?ccccoovviviiieiiicvceeee, 6
Understanding Key Embedding CONCEPLSccvevverieiiiieniiiieie e 8

Managing @ RUN TIMEooiiiieie ettt et sree e snaee e sraee s 10

MaNAGING CONEEXLSocveeiiitiiieiee ettt 11

Initializing Built-in and Global JS ODJECtScccccvviiei i 13

Creating and Initializing Custom ODJECESccccoviiiiiiiiiiie e 14

Providing Private Data for ODJECtSccccevivieiiieeiie e 17
Handling UNICOUEcuiiiiiiiiiie e 17
Working With JS Data TYPESveeviieeiiiee it e ettt e ae e snaeeenns 18
WOrking With JS ValUESooiiiiiiiie e 19
WOrking With JS STFHNGS ...cocvveeiiie e 20

Unicode SIrNG SUPPOIT ..ottt 20

Interned StriNg SUPPOITocvvieiiee e 20
MaNAGING SECUIILY ...veiueiiiiieeieeiteee e 21
Chapter 2 JavaScript APl Referenceccccoveiiceiicinie i 23
MaCIO DEFINITIONS ...ttt e eees 24
JSVAL_IS_OBUIECT ittt sttt ettt sttt nbe s s 25
JSVAL IS NUMBERcoviiieeieeeteeeeeee ettt es s s st ne s ean e 25
JSVAL IS INT ettt sttt sb ettt e sbeste et e benbee e 26
JSVAL IS DOUBLEoviecieeeeeeeeeeeeeeee et 26
JSVAL_IS_STRING .ottt sttt ettt sttt e 27
JSVAL_IS_ BOOLEANouiviiieeeeeeeeeteee e nie s st 27
JSVAL IS INULL ettt sttt sttt st ese et nae e 28

Contents i

JSVAL_IS_PRIMITIVE i 28

JSVAL_IS VOID oot se e s ees e 28
ISVAL_IS_GCTHING oo 29
ISVAL_TO_GCTHING oo eeeeeeeeeeee e eeeeeeeeee e e eeeeeees s sese s seeens 29
JSVAL_TO_OBIECT .o eeeeeeeeeee e eee e sese e 30
JSVAL_TO _DOUBLE oo ees e eesen 30
JSVAL_TO _STRING .o eeeeseeeeeeeeseeees e eeeeeeese e s ees e ees s esseseeens 31
OBJIECT_TO _ISVAL .o eeeeeeeee e eee e 31
DOUBLE_TO _JSVAL ..oeeeeeeeeeeeeeeeeeeeeeeeee e eeeeess e s eeseee e ses e ees e eese e 32
STRING_TO JISVAL .o eee e eeeee e ees e 32
ISVAL_LOCK .ot es e ee e s es e 32
JSVAL _UNLOCK .ot 33
INT_FITS_IN_ISVAL eooeeeeeeeeeee e ees e eee e eee e ee e ee e 33
ISVAL _TO INT oo 34
INT_TO _JISVAL oo eee e ee e eee e et ee e e ee s 34
ISVAL_TO_BOOLEAN ... 35
BOOLEAN_TO _ISVAL .oeoveoeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeess e eee e eeseeeeee s seseeeseeses e 35
JSVAL_TO _PRIVATE oo 35
PRIVATE_TO JSVAL .oeeoeeeeeeeeeeee oo eeee e eee e e ee s seeeee s s ees e ees e 36
JSPROP_ENUMERATE ..o eeeeeeeeeeee e eee e eee e eee s 36
JSPROP_READONLY ..cooeeoeeeeeeeeeeeeee e ees e ees s 37
JSPROP_PERMANENTooooveeeeeeeeseeeeeeeeeeseeeeeeeeeee e eeeeeee e sese e eese e 37
JSPROP_EXPORTED ..ocovveeeeeeeeeeeeeoeseeeeeseeeeseoesseee e eesseesseeesseees e ees s eese e s eeseos 38
JSPROP_INDEX ..ooeeeeeeeeeeseeeeeeeeeeeeeseeeeesee e seeeeee e s eeeeeeese s eee e 38
JSFUN_BOUND_METHOD ...ooveeiveeeeeeeeeeeeeeseeeeeeseeeeseresees e eeseeeeseess e eseeessen 39
JSFUN_GLOBAL_PARENT ..o 39
JSVAL VOID .ooveoeeeeeeeeeeee e eeeee e e e s e es e ee s s s ee s 40
JSVAL NULL oot 40
JSVAL_ZERO .o eeoe e eeeeeeseeeee e es e eeees e s es e ee s 41
JSVAL ONE oo s 41
JSVAL _FALSE .ooveoeeeeeeeeeeee e seeeseeeee s e ee e eeees e seeees e e s ees s e eere 41
JSVAL _TRUE .ot eeeeeee e eeeee e 42
ISCLASS_HAS PRIVATE .voooveeeveeeeeeeseeeeeeeeeeeeeeeees e ees s e s eeseeessese e 42

i JavaScript C Engine API Reference

JSCLASS_NEW_ENUMERATE ...t 42

JSCLASS_NEW _RESOLVE ..ottt 43
JSPRINCIPALS_HOLD ...oiiiiitieiie ettt s 43
JSPRINCIPALS_DROP ..ottt sttt st 44
JS_ NEWRUNLIME ..ottt e e e e e s te e e see e e e 44
JS_DESLIOYRUNTIME ...ttt et e 45
JSRESOLVE_QUALIFIED ..ottt e 45
JSRESOLVE_ASSIGNING ...ccoiiiiiieie sttt sttt 46
Structure DEfINITIONSoiiiiieie e e 46
JSCIASS ..ttt 46
JSODJECIOPS vttt bbb 48
JSPTOPEITYSPEC it 50
JSFUNCHIONSPEC ..ttt bbb 51
JSCONSIDOUBIESPECeveieiee e 52
JSPFINCIPAIS .ot 53
N = 4 (o] 4= o Lo o PP PP 55
JSTAATTAY .ttt ettt b bbb st sr ettt st nne e 56
JOPTOPITY o 56
FUNCLioN DEfiNItIONSooiiiiie e e 57
JS_GEINANVAIUEeeeiii et e e e st saa e sraae e snaee e 57
JS_GetNegativelnfinityValue ... 58
JS_GetPositivelnfinityValueccccoovvi i 58
JS_GEtEMPLYStNGValUE ..o e 59
JS_CONVEITAIGUIMENTS ...viiiiie ittt sb e e s arnees 59
JS_CONVEIVEAIUE ... 61
JS_ValUETOONDJECL ...vviciiie ettt ettt e e e e 62
JS_VAlUEBTOFUNCLION ..ottt st 63
NI Z: L[S I 151] o PSP 64
JS_ValUETONUMDET ..o 64
JS_VAlUBTOINI3Z ..ot e e e e s nre e 65
JS_ValUETOECMAINE3Z ..ot 66
JS_ValUETOECMAUINESZoiiiieie et sttt s e 67
JS_VAIUEBTOUINTLE ..ottt et e 68

Contents iii

JS ValUETOBOOIBANc.eeevie ettt e 68

JS VAIUBTOIA ..ottt e ere e e sne s 69
JS IATOVAIUE ..o s ns 70
JS_TYPEOFVAIUE ... 70
JS_GeITYPENAIME ..ot 71
S S SPSR 71
JS FINISN e 72
JS LOCK ittt a e raen 72
JS UNIOCK ottt ettt et e e et e e bt e e s sta e e e re e e saneean 72
JS NEWECONTEXE ...ttt bbb e e srabe e s 73
JS_ DESIIOYCONTEXEeeiiiiiie ittt saa e eae e naeeas 74
JS_ GEERUNTIME it e e sntae e snr e s nnaees 74
NI 000 1 ()T (A L (=T - 1o | (SRR 74
T C 1= AV L=] 6] o o ISR SRR 75
JS SEEVEISION ..ottt e sttt et ere e are s 76
JS_GetimplementatioNVErsiONcccccoveeiiie i 77
JS_GetGlobalODJECTccceiiiiiiiie e 77
JS_SetGIODAIODIECTcoceeeecee e 77
JS_ INItStANAArdCIASSESeeieiveeieiei ettt 78
JS_GetSCOPECRAINeeiicie et 78
JS MANIOC .ot a e 79
JS FEAIIOC .. 79
R T SRR 80
JS SEIAUP e 81
JS_ NEWDOUDIE ...t e er e e 81
JS_NEWDOUDBIEVAIUEooiiieiiie e 82
JS_ NEWNUMDBEIVAIUEociviiiieiie et 83
JS_AAAROOL ... 83
JS_ ADANGMEAROOLcviiiieiiecie et eree e e 84
JS_ DUMPNEAMEAROOLSviiiiiieciie s nrr e e nnee s 85
JS_REMOVEROOL ..ottt e sab e e saaeas 86
JS BEOINREGQUESE ...ttt st e et e et e s ene e e s nneeas 86
JS_ENAREQUESTE ...ttt 87

iv JavaScript C Engine API Reference

NI 1U] o 1] o [LT o [0 1= SRS 87

JS_RESUMEREQUESTeiiiiiiieiitee e 88
R o To] 103 I o1 o OSSR 88
JS_UNIOCKGCTRING ittt e 89
BT L O PP O PR TR TP OURTPPRUPTPI 89
JS MAYDEGC ...ttt ettt eree s 90
JS_SEtGCCAIIDACKcociiiiiiii e 90
NI B 1= T 104 Lo VAN 4 | RSP SP 91
JS_NEWIHAITAY ...ttt et e 91
JS_PropertyStUDoee i 91
JS ENUMETAtESTUD ...ooiiiiic e e e 92
JS_RESOIVESIUD .o 92
JS CONVEISIUD oot et 93
JS_FINAIIZESIUD oo 94
JS INILCIASS ..viiceiiei ettt et et e e e e e e e be e e be e e re e e aeeeenas 94
BRI €= (O - TSP 96
JS INSTANCEOT .ot 96
T €= (17 U= RSP 97
JS SEEPIIVALE ..ot e b e e earae e 97
JS_GEtCONLEXIPIIVALEciivieieciie e ettt sttt e et e e e e 98
JS_ SEtCONLEXIPIIVALEoiiiiiiiiiiie ettt e e 98
JS_GetINStANCEPTIVALEcc.vviiiiie e 99
JS_GEIPTOTOLYPE .ot 100
JS S BIPIOLOLY PR e 100
JS_GRIPAIENT ... e 101
IS _SEIPAIENT ..o 102
JS_GELCONSIIUCTON ...eiiiiiieiiie ettt ettt e et e st e e senee s 102
JS_ NEWODJECT ..o 103
JS_CONSLIUCTODJECTviiiiiiieicie e 104
NI 1= 1 1=T@] 1= ol SRS 105
JS_DefineCoNStDOUDIESoociiiieiiiiie e 106
JS_DEfiNEPIOPEILIESvviiciiii ettt e e e sre e e see e 106
JS_DEfINEPIOPEITY .oiieiiiiieice e e 107

Contents v

JS_ DEfINEUCPIOPEITY ..vviiieeieciie ettt enaaesne s 108

JS_DefinePropertyWithTinyIdcoooiiiiiiiiii e 110
JS_DefineUCPropertyWithTiNYIDcccoooviiiiiiecie e 111
JS_ALIASPIOPEITY ...veeiiieitee ettt ettt 113
JS _LOOKUPPIOPEIY .eeiiiiieiciie ettt et et en e e sree e e sraeeenee e e 114
JS_LOOKUPUCPIOPEITY ...veiiieiectieiieiteeie ettt 114
JS_GEIPTOPEITY .o 115
N CT=] L8101 o] o =] ¢ PP TPPRTR 116
JS_SEIPIOPEITY .ot 116
JS_SELUCPIOPEITY .oeeiiiiiiiiieecte ettt e e sanbe s 117
JS_DEIBIEPIOPEITY ..veiiiiiieieeeteetie ettt bbb 118
JS_DEIEtEPIOPEITYZ ...oooiiieiciee ettt ettt 119
JS_DEleteUCPIOPEITYZooiiieieiieieeiee ettt 120
JS_GetPropertyAtrIDULEScociie e e 121
JS_SetProperty AttribDULESooiieiiecee s 122
JS_ NEWAITAYODJECToiiiieiiiie e et e et e e enees 123
JS_ISAITAYODJECT ..veciiiie ettt 123
JS_GEtAITayLenGtooeiiie e e s 124
JS_SELAITAYLENGEN e 124
JS_HASAITAYLENGINooiiiiicei e e 125
JS DEfiNBEIEMENL ...t 126
JS_ANASEIEMENT ...oeeeeiecee e e 127
JS_LOOKUPEIBMENT ..ottt st 128
NI 1= 1 =1 =T o 4= o SRR 129
BRI 1= 1= 1= g T= o USSR 129
JS_DeleteEIBMENT ... e 130
JS_DEleteEIBMENTZ ..o s 131
T 1 =TT STt} o - SRR 132
JS_ ENUMETALE ..ottt ettt sabe e et nba e e b e e e 132
JS CRECKACCESS ...vviiiiiiiiee ettt ettt ettt e et ae e sn e e stae e e sraeesraeennees 133
JS INEWFUNCHION ..iiiiiie ittt 133
JS_GetFUNCLIONODJECTcccvvieeceie e 134
JS_GEtFUNCHIONNGAMEoiiiiiiiecie et 135

vi JavaScript C Engine API Reference

R D] g T= LU] o1 o] o - TR 135

JS DefiNEFUNCHIONoiiiiiii e 136
JS_CloNeFUNCLIONODJECT ..ocveiiiiciiccee e 137
JS_COMPIIESCIIPL .ot 138
JS_CompileScriptFOrPriNCIPAlScoovviieiiiie e 139
JS_COMPIIEUCSCIIPL .ottt 140
JS_CompileUCScriptFOrPriNCIipalsccooveveiriiiiiiieicceee e 141
JS_COMPUIEFIIE <. e 142
JS_NEWSCHPLODJECL ...t 143
T B 1= 0)11 | o SR 143
JS_COMPIIEFUNCLION ...eiiiiceieee et 143
JS_CompileFunctionFOrPriNCIPAlScoovviviiiieicee e 145
JS_CoMPIIEUCFUNCLION ..ottt 146
JS_CompileUCFUNCtionFOrPrinCipalsccccoveiiieiiiie e 147
JS_DECOMPIIESCIIPL et 148
JS_DeCOMPIlEFUNCLIONcuiiecie e e ee e 149
JS_DecompileFuNCtioNBOAYccocviiiiiiiiiiiiiie e 150
T =T e U1 (oo T o | SO 151
JS_EVAIUALESCIIPL ..o 151
NI V7 LU =0 Lo] o | SR 152
JS_EvaluateScriptFOrPriNCIPalScc.oiiiiiiieiieiee e 153
JS_EvaluateUCSCriptFOrPriNCIPalSccvveiiiiie i 155
JS_CAlIFUNCLION ...ttt ettt nees 156
JS_CallFUNCLIONNGAMEcoiiiiie e 157
JS_CallFUNCLIONVAIUE ...ooviicieiii ettt 158
JS_SetBranchCallbackcccoiiiiiiie e 159
JS_ISRUNNING .ottt et sr e 159
BRI 1o 1 1 o 1 o SRR 160
JS_ INBWSEIING ettt bbbttt e 160
T N T= Y1 L0 g o o S 161
JS_NEWSHHNGCOPYN ..ottt e 161
JS_NeWUCSLINGCOPYN ..ooeiiiie ittt e e sraee e 162
JS_NEWSHINGCOPYZ ..ottt 163

Contents vii

JS_ NEWUCSINNGCOPYZ ..ocveeivieitie ettt sttt ae et e e nae s 164

JS_INTEINSIFING .ottt ettt 164
NI [0 (=10 018 L] (T T PSS 165
JS_INErNUCSIINGN .ot 166
JS_GEtSIHNGCNANS .oovviiiiieecee et ee e st e e srae e e nraee e 166
JS_GEISIIINGBYLESveiieiitiiee ittt bttt sr e 167
JS_GEtStINGLENGLN ..o 167
JS_COMPAIESIIINGS vveeiiieiiie et e et eert e e sree e e sraeeesraeennees 168
T (] 010 1 =1 o (o] SR PP RTPPR 168
JS_RepPOrtOULOFMEMOIY ...cc.vveeiiie ettt ettt e e e e 169
JS_SEtEFTOIREPOIMEL ..ot 169

viii JavaScript C Engine API Reference

Chapter

Overview of the JavaScript C Engine

This chapter provides an overview of the C language implementation of the
JavaScript (JS) engine, and it describes how you can embed engine calls in
your applications to make them JS-aware. There are two main reasons for
embedding the JS engine in your applications: to automate your applications
using scripts; and to use the JS engine and scripts whenever possible to
provide cross-platform functionality and eliminate platform-dependent
application solutions.

Supported Versions of JavaScript

The JS engine supports JS 1.0 through JS 1.4. JS 1.3 and greater conform to the
ECMAScript-262 specification. At its simplest, the JS engine parses, compiles,
and executes scripts containing JS statements and functions. The engine
handles memory allocation for the JS data types and objects needed to execute
scripts, and it cleans up—garbage collects—the data types and objects in
memory that it no longer needs.

Chapter 1, Overview of the JavaScript C Engine 1

How Do You Use the Engine?

How Do You Use the Engine?

Generally, you build the JS engine as a shared resource. For example, the
engine is a DLL on Windows and Windows NT, and a shared library on Unix.
Then you link your application to it, and embed JS engine application
programming interface (API) calls in your application. The JS engine’s API
provides functions that fall into the following broad categories:

< Data Type Manipulation

< Run Time Control

« (lass and Object Creation and Maintenance
<« Function and Script Execution

= String Handling

< Error Handling

< Security Control

= Debugging Support

You will use some of these functional categories, such as run time control and
data type manipulation, in every application where you embed JS calls. For
example, before you can make any other JS calls, you must create and initialize
the JS engine with a call to the JS_NewRunt i ne function. Other functional
catergories, such as security control, provide optional features that you can use
as you need them in your applications.

How Does the Engine Relate to Applications?

Conceptually, the JS engine is a shared resource on your system. By embedding
engine API calls in your applications you can pass requests to the JS engine for
processing. The engine, in turn, processes your requests, and returns values or
status information back to your application. Figure 1.1 illustrates this general
relationship:

2 JavaScript C Engine API Reference

How Does the Engine Relate to Applications?

Figure 1.1

@ ~r cal _

9 ReturnValue
<}

Application JS Engine

For example, suppose you are using the JS engine to automate your application
using JS scripts, and suppose that one script your application runs authenticates
a user and sets a user’s access rights to the application. First, your application
might create a custom JS object that represents a user, including slots for the
user’s name, ID, access rights, and a potential list of functions that the user has
permission to use in the application.

In this case, your application’s first request to the JS engine might be a call to
JS _NewObj ect to create the custom object. When the JS engine creates the
object, it returns a pointer to your application. Your application can then call
the JS engine again to execute scripts that use the object. For example, after
creating the user object, your application might immediately pass a script to
JS Eval uat eScri pt for immediate compiling and executing. That script
might get and validate a user’s information, and then establish the user’s access
rights to other application features.

In truth, the actual relationship between your application and the JS engine is
somewhat more complex than shown in Figure 1.1. For example, it assumes
that you have already built the JS engine for your platform. It assumes that your
application code includes j sapi . h, and it assumes that the first call your
application makes to the engine initializes the JS run time.

When the JS engine receives an initialization request, it allocates memory for
the JS run time. Figure 1.2 illustrates this process:

Figure 1.2

JS NewRuntime
— -

Application JSEngine | | RunTime

- Return Value

Chapter 1, Overview of the JavaScript C Engine 3

How Does the Engine Relate to Applications?

The run time is the space in which the variables, objects, and contexts used by
your application are maintained. A context is the script execution state for a
thread used by the JS engine. Each simultaneously existent script or thread must
have its own context. A single JS run time may contain many contexts, objects,
and variables.

Almost all JS engine calls require a context argument, so one of the first things
your application must do after creating the run time is call JS_NewCont ext at
least once to create a context. The actual number of contexts you need
depends on the number of scripts you expect to use at the same time in your
application. You need one context for each simultaneously existing script in
your application. On the other hand, if only one script at a time is compiled
and executed by your application, then you need only create a single context
that you can then reuse for each script.

After you create contexts, you will usually want to initialize the built-in JS
objects in the engine by calling JS_| ni t St andar dC asses. The built-in
objects include the Arr ay, Bool ean, Dat e, Mat h, Nunmber, and St ri ng objects
used in most scripts.

Most applications will also use custom JS objects. These objects are specific to
the needs of your applications. They usually represent data structures and
methods used to automate parts of your application. To create a custom object,
you populate a JS class for the object, call JS_| ni t O ass to set up the class
in the run time, and then call JS_NewCbj ect to create an instance of your
custom obiject in the engine. Finally, if your object has properties, you may
need to set the default values for them by calling JS_Set Pr operty for each

property.

Even though you pass a specific context to the JS engine when you create an
object, an object then exists in the run time independent of the context. Any
script can be associated with any context to access any object. Figure 1.3
illustrates the relationship of scripts to the run time, contexts, and objects.

4 JavaScript C Engine API Reference

IS RunTime

How Does the Engine Relate to Applications?

Figure 1.3

| | |

Context Context Context

=

Note

As Figure 1.3 also illustrates, scripts and contexts exist completely independent
from one another even though they can access the same objects. Within a given
run time, an application can always use any use any unassigned context to
access any object. There may be times when you want to ensure that certain
contexts and objects are reserved for exclusive use. In these cases, create
separate run times for your application: one for shared contexts and objects,
and one (or more, depending on your application’s needs) for private contexts
and objects.

Only one thread at a time should be given access to a specific context.

Chapter 1, Overview of the JavaScript C Engine 5

Building the Engine

Building the Engine

Before you can use JS in your applications, you must build the JS engine as a
shareable library. In most cases, the engine code ships with make files to
automate the build process.

For example, under Unix, the j s source directory contains a base make file
called Makefi | e, and a conf i g directory. The confi g directory contains
platform-specific . mak files to use with Makef i | e for your environment.
Under Windows NT the make file is j smak.

Always check the source directory for any r eadne files that may contain late-
breaking or updated compilation instructions or information.

What Are the Requirements for Engine
Embedding?

To make your application JS-aware, embed the appropriate engine calls in your
application code. There are at least five steps to embedding:

1.

Add #i ncl ude j sapi . h to your C modules to ensure that the compiler
knows about possible engine calls. Specialized JS engine work may rarely
require you to include additional header files from the JS source code. For
example, to include JS debugger calls in your application, code you will
need to include j sdbgapi . h in the appropriate modules.

Most other header files in the JS source code should not be included. To do
so might introduce dependencies based on internal engine implementations
that might change from release to release.

Provide support structures and variable declarations in your application. For
example, if you plan on passing a script to the JS engine, provide a string
variable to hold the text version of the script in your application.Declare
structures and variables using the JS data types defined in j sapi . h.

Script application-specific objects using JavaScript. Often these objects will
correspond to structures and methods that operate on those structures in
your C programs, particularly if you are using the JS engine to automate
your application.

6 JavaScript C Engine API Reference

What Are the Requirements for Engine Embedding?

4. Embed the appropriate JS engine API calls and variable references in your
application code, including calls to initialize the built-in JS objects, and to
create and populate any custom objects your application uses.

5. Most JS engine calls return a value. If this value is zero or NULL, it usually
indicates an error condition. If the value is nonzero, it usually indicates
success; in these cases, the return value is often a pointer that your
application needs to use or store for future reference. At the very least, your
applications should always check the return values from JS engine calls.

The following code fragment illustrates most of these embedding steps, except
for the creation of JS scripts, which lies outside the scope of the introductory
text. For more information about creating scripts and objects using the
JavaScript language itself, see the Client-Side JavaScript Guide. For further
information about scripting server-side objects, see the Server-Side JavaScript
Guide.

#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>
#i ncl ude <string. h>

/* include the JS engi ne APl header */

#i ncl ude "jsapi.h"

/* main function sets up global JS variables, including run tine,
* a context, and a global object, then initializes the JS run tine
* and creates a context. */

int main(int argc, char **argv)

{

int c, i;
/*set up global JS variables, including global and custom objects */

JSVer si on version;
JSRuntine *rt;
JSCont ext *cx;

JSObj ect *glob, *it;
JSBool builtins;

/* initialize the JSrun time, and return result in rt */

rt = JS NewRuntine(8L * 1024L * 1024L);

Chapter 1, Overview of the JavaScript C Engine 7

Understanding Key Embedding Concepts

/* if rt does not have a value, end the program here */

if (!'rt)
return 1;

/* create a context and associate it with the JS run time */
cx = JS NewContext(rt, 8192);
/* if cx does not have a value, end the program here */
if (cx == NULL)
return 1;

/* create the gl obal object here */
glob = JS_NewObj ect (cx, clasp, NULL, NULL);

/* initialize the built-in JS objects and the gl obal object */

builtins = JS_ | nitStandardC asses(cx, glob);

This example code is simplified to illustrate the key elements necessary to
embed JS engine calls in your applications. For a more complete example—
from which these snippets were adapted—see j s. ¢, the sample application
source code that is included with the JS engine source code.

Understanding Key Embedding Concepts

For most of the JavaScript aware applications you create, you will want to
follow some standard JS API embedding practices. The following sections
describe the types of API calls you need to embed in all your applications.

In many cases, the order in which you embed certain API calls is important to
successful embedding. For example, you must initialize a JS run time before
you can make other JS calls. Similarly, you should free the JS run time before
you close your application. Therefore, your application’s main function
typically sandwiches API calls for initializing and freeing the JS run time around
whatever other functionality you provide:

int main(int argc, char **argv)

{

int c, i;
/*set up gl obal JS variables, including global and custom objects */

JSVer si on version;

8 JavaScript C Engine API Reference

/*

/*

}

Understanding Key Embedding Concepts

JSRuntine *rt;
JSCont ext *cx;
JSObj ect *glob, *it;

/* initialize the JS run time, and return result in rt */
rt = JS_NewRuntine(8L * 1024L * 1024L);
if rt does not have a value, end the program here */

if (!'rt)
return 1;

/* establish a context */
cx = JS NewContext(rt, 8192);
/* if cx does not have a value, end the program here */

if (cx == NULL)
return 1;

/* initialize the built-in JS objects and the global object */

builtins = JS I nitStandardC asses(cx, glob);

i ncl ude your application code here, including JS APl calls */
/* that may include creating your own custom JS objects. The JS */
/* object nodel starts here. */

/* Before exiting the application, free the JS run tine */

JS DestroyRuntine(rt);

As this example illustrates, applications that embed calls to the JS engine are
responsible for setting up the JS run time as one of its first acts, and they are
responsible for freeing the run time before they exit. In general, the best place

Chapter 1, Overview of the JavaScript C Engine 9

Understanding Key Embedding Concepts

to ensure that the run time is initialized and freed is by embedding the
necessary calls in whatever module you use as the central JS dispatcher in your
application.

After you initialize the run time, you can establish your application’s JS object
model. The object model determines how your JS objects relate to one another.
JS objects are hierarchical in nature. All JS objects are related to the global
object by default. They are descendants of the global object. You automatically
get a global object when you initialize the standard JS classes:

builtins = JS_ I nitStandardC asses(cx, glob);

The global object sets up some basic properties and methods that are inherited
by all other objects. When you create your own custom objects, they
automatically use the properties and methods defined on the global object. You
can override these default properties and methods by defining them again on
your custom obiject, or you can accept the default assignments.

You can also create custom objects that are based on other built-in JS objects,
or that are based on other custom objects. In each case, the object you create

inherits all of the properties and methods of its predecessors in the hierarchical
chain, all the way up to the global object. For more information about global

and custom objects, see Initializing Built-in and Global JS Objects and Creating
and Initializing Custom Objects.

Managing a Run Time

The JS run time is the memory space the JS engine uses to manage the contexts,
objects, and variables associated with JS functions and scripts. Before you can
execute any JS functions or scripts you must first initialize a run time. The API
call that initializes the run time is JS_NewRunt i ne. JS_NewRunt i ne takes a
single argument, an unsigned integer that specifies the maximum number of
bytes of memory to allocate to the run time before garbage collection occurs.
For example:

rt = JS NewRuntine(8L * 1024L * 1024L);

As this example illustrates, JS NewRunt i me also returns a single value, a
pointer to the run time it creates. A non-NULL return value indicates successful
creation of the run time.

10 JavaScript C Engine API Reference

Understanding Key Embedding Concepts

Normally, you only need one run time for an application. It is possible,
however, to create multiple run times by calling JS_NewRunt i me as necessary
and storing the return value in a different pointer.

When the JS run time is no longer needed, it should be destroyed to free its
memory resources for other application uses. Depending on the scope of JS use
in your application, you may choose to destroy the run time immediately after
its use, or, more likely, you may choose to keep the run time available until
your application is ready to terminate. In either case, use the

JS DestroyRunti e to free the run time when it is no longer needed. This
function takes a single argument, the pointer to the run time to destroy:

JS_DestroyRuntine(rt);

If you use multiple run times, be sure to free each of them before ending your
application.

Managing Contexts

Almost all JS API calls require you to pass a context as an argument. A context
identifies a script in the JavaScript engine. The engine passes context
information to the thread that runs the script. Each simultaneously-executing
script must be assigned a unique context. When a script completes execution,
its context is no longer in use, so the context can be reassigned to a new script,
or it can be freed.

To create a new context for a script, use JS_NewCont ext . This function takes
two arguments: a pointer to the run time with which to associate this context,
and the number of bytes of stack space to allocate for the context. If successful,
the function returns a pointer to the newly established context. For example:

JSCont ext *cx;

cx = JS NewContext(rt, 8192);

Chapter 1, Overview of the JavaScript C Engine 11

Understanding Key Embedding Concepts

The run time must already exist. The stack size you specify for the context
should be large enough to accommodate any variables or objects created by the
script that uses the context. Note that because there is a certain amount of
overhead associated with allocating and maintaining contexts you will want to:

1. Create only as many contexts as you need at one time in your application.

2. Keep contexts for as long as they may be needed in your application rather
than destroying and recreating them as needed.

When a context is no longer needed, it should be destroyed to free its memory
resources for other application uses. Depending on the scope of JS use in your
application, you may choose to destroy the context immediately after its use,
or, more likely, you may choose to keep the context available for reuse until
your application is ready to terminate. In either case, use the

JS_Dest r oyCont ext to free the context when it is no longer needed. This
function takes a single argument, the pointer to the context to destroy:

JS_DestroyCont ext (cx);
If your application creates multiple run times, the application may need to
know which run time a context is associated with. In this case, call

JS CGet Runt i ne, and pass the context as an argument. JS_Get Runt i e
returns a pointer to the appropriate run time if there is one:

rt = JS GetRuntinme(cx);

When you create a context, you assign it stack space for the variables and
objects that get created by scripts that use the context. You can also store large
amounts of data for use with a given context, yet minimize the amount of stack
space you need. Call JS_Set Cont ext Pri vat e to establish a pointer to
private data for use with the context, and call JS_Get Cont ext Pri vat e to

retrieve the pointer so that you can access the data. Your application is
responsible for creating and managing this optional private data.

To create private data and associate it with a context:
1. Establish the private data as you would a normal C void pointer variable.

2. Call JS_Set Cont ext Pri vat e, and specify the context for which to
establish private data, and specify the pointer to the data.

For example:

JS_Set Cont ext Private(cx, pdata);

12 JavaScript C Engine API Reference

Understanding Key Embedding Concepts

To retrieve the data at a later time, call JS_Get Cont ext Pri vat e, and pass
the context as an argument. This function returns the pointer to the private
data:

pdata = JS _Get ContextPrivate(cx);

Initializing Built-in and Global JS Objects

The JavaScript engine provides several built-in objects that simplify some of
your development tasks. For example, the built-in Ar r ay object makes it easy
for you to create and manipulate array structures in the JS engine. Similarly, the
Dat e object provides a uniform mechanism for working with and handling
dates. For a complete list of built-in objects supported in the engine, see the
reference entry for JS_InitStandardClasses.

The JS engine always uses function and global objects. In general, the global
object resides behind the scenes, providing a default scope for all other JS
objects and global variables you create and use in your applications. Before
you can create your own objects, you will want to initialize the global object.
The function object enables objects to have and call constructors.

A single API call, JS_| ni t St andar dCl asses, initializes the global and
function objects and the built-in engine objects so that your application can use
them:

JSBool builtins;

builtins = JS_ | nitStandardd asses(cx, glob);

JS Init Standar dd asses returns a JS boolean value that indicates the
success or failure of the initialization.

You can specify a different global object for your application. For example, the
Netscape Navigator uses its own global object, wi ndow. To change the global
object for you application, call JS_Set A obal Obj ect . For more information,
see the reference entry for JS_SetGlobalObject.

Chapter 1, Overview of the JavaScript C Engine 13

Understanding Key Embedding Concepts

Note

Creating and Initializing Custom Objects

In addition to using the engine’s built-in objects, you will create, initialize, and
use your own JS objects. This is especially true if you are using the JS engine
with scripts to automate your application. Custom JS objects can provide direct
program services, or they can serve as interfaces to your program'’s services. For
example, a custom JS object that provides direct service might be one that
handles all of an application’s network access, or might serve as an
intermediary broker of database services. Or a JS object that mirrors data and
functions that already exist in the application may provide an object-oriented
interface to C code that is not otherwise, strictly-speaking, object-oriented itself.
Such a custom object acts as an interface to the application itself, passing values
from the application to the user, and receiving and processing user input before
returning it to the application. Such an object might also be used to provide
access control to the underlying functions of the application.

There are two ways to create custom objects that the JS engine can use:

= Write a JS script that creates an object, its properties, methods, and
constructor, and then pass the script to the JS engine at run time.

< Embed code in your application that defines the object’s properties and
methods, call the engine to initialize a new object, and then set the object’s
properties through additional engine calls. An advantage of this method is
that your application can contain native methods that directly manipulate
the object embedding.

In either case, if you create an object and then want it to persist in the run time
where it can be used by other scripts, you must root the object by calling

JS AddRoot or JS_AddNanedRoot . Using these functions ensures that the
JS engine will keep track of the objects and clean them up during garbage
collection, if appropriate.

Creating an Object From a Script

One reason to create a custom JS object from a script is when you only need an
object to exist as long as the script that uses it is executing. To create objects
that persist across script calls, you can embed the object code in your
application instead of using a script.

You can also use scripts to create persistent objects, too.

14 JavaScript C Engine API Reference

Understanding Key Embedding Concepts

To create a custom object using a script:

1. Define and spec the object. What is it intended to do? What are its data
members (properties)? What are its methods (functions)? Does it require a
run time constructor function?

2. Code the JS script that defines and creates the object. For example:

function nyfun(){
var X = newQbject();

Object scripting using JavaScript occurs outside the context of embedding
the JS engine in your applications. For more information about object
scripting, see the Client-Side JavaScript Guide and the Server-Side JavaScript
Guide.

3. Embed the appropriate JS engine call(s) in your application to compile and
execute the script. You have two choices: 1.) compile and execute a script
with a single call to JS_Eval uat eScri pt or JS_Eval uat eUCScri pt,
or 2.) compile the script once with a call to JS_Conpi | eScri pt or
JS Compi | eUCScri pt, and then execute it repeatedly with individual
calls to JS_Execut eScri pt . The “UC” versions of these calls provide
support for Unicode-encoded scripts.

An object you create using a script only can be made available only during the
lifetime of the script, or can be created to persist after the script completes
execution. Ordinarily, once script execution is complete, its objects are
destroyed. In many cases, this behavior is just what your application needs. In
other cases, however, you will want object persistence across scripts, or for the
lifetime of your application. In these cases you need to embed object creation
code directly in your application, or you need to tie the object directly to the
global object so that it persists as long as the global object itself persists.

Embedding a Custom Obiject in an Application

Embedding a custom JS object in an application is useful when object
persistence is required or when you know that you want an object to be
available to several scripts. For example, a custom object that represents a
user’'s ID and access rights may be needed during the entire lifetime of the

Chapter 1, Overview of the JavaScript C Engine 15

Understanding Key Embedding Concepts

application. It saves overhead and time to create and populate this object once,
instead of recreating it over and over again with a script each time the user’'s ID
or permissions need to be checked.

One way to embed a custom object in an application is to:

1. Create a JSPr opert ySpec data type, and populate it with the property
information for your object, including the name of the property’s get and
set methods.

2. Create a JSFunct i onSpec data type, and populate it with information
about the methods used by your object.

3. Create the actual C functions that are executed in response to your object’s
method calls.

4. Callto JS NewObj ect orJS Const ruct Obj ect to instantiate the
object.

5. Call JS_Def i neFuncti ons to create the object’s methods.
6. Call JS_Defi neProperti es to create the object’s properties.

The code that describes persistent, custom JS objects should be placed near the
start of application execution, before any code that relies upon the prior
existence of the object. Embedded engine calls that instantiate and populate the
custom object should also appear before any code that relies on the prior
existence of the object.

Note An alternate, and in many cases, easier way to create a custom object in
application code is to call JS_Def i neChj ect to create the object, and then
make repeated calls to JS_Set Pr operty to set the object’s properties. For
more information about defining an object, see JS_Def i neCObj ect . For more
information about setting an object’s properties, see JS_Set Pr operty.

16 JavaScript C Engine API Reference

Handling

Handling Unicode

Providing Private Data for Objects

Like contexts, you can associate large quantities of data with an object without
having to store the data in the object itself. Call JS_Set Pri vat e to establish a
pointer to private data for the object, and call JS_GCet Pri vat e to retrieve the
pointer so that you can access the data. Your application is responsible for
creating and managing this optional private data.

To create private data and associate it with an object:
1. Establish the private data as you would a normal C void pointer variable.

2. Call JS_Set Pri vat e, specify the object for which to establish private
data, and specify the pointer to the data.

For example:

JS_Set Cont ext Private(cx, obj, pdata);

To retrieve the data at a later time, call JS_Get Pri vat e, and pass the object
as an argument. This function returns the pointer to an object’s private data:

pdata = JS Get ContextPrivate(cx, obj);

Unicode

The JS engine now provides Unicode-enabled versions of many API functions
that handle scripts, including JS functions. These functions permit you to pass
Unicode-encoded scripts directly to the engine for compilation and execution.
The following table lists standard engine functions and their Unicode
equivalents:

Standard Function Unicode-enabled Function
JS_DefineProperty JS_DefineUCProperty
JS_DefinePropertyWithTinyld JS_DefineUCPropertyWithTinyld
JS_LookupProperty JS_LookupUCProperty
JS_GetProperty JS_GetUCProperty
JS_SetProperty JS_SetUCProperty
JS_DeleteProperty?2 JS_DeleteUCProperty2

Chapter 1, Overview of the JavaScript C Engine 17

Working with JS Data Types

Working

Standard Function
JS_CompileScript
JS_CompileScriptForPrincipals
JS_CompileFunction
JS_CompileFunctionForPrincipals
JS_EvaluateScript
JS_EvaluateScriptForPrincipals
JS_Newstring
JS_NewsStringCopyN
JS_NewstringCopyZ
JS_InternString

Unicode-enabled Function
JS_CompileUCScript
JS_CompileUCScriptForPrincipals
JS_CompileUCFunction
JS_CompileUCFunctionForPrincipals
JS_EvaluateUCScript
JS_EvaluateUCScriptForPrincipals
JS_NewUCString
JS_NewUCStringCopyN
JS_NewUCStringCopyZ
JS_InternUCString

— JS_InternUCStringN

Unicode-enabled functions work exactly like their traditional namesakes,
except that where traditional functions take a char * argument, the Unicode
versions take a j schar * argument.

with JS Data Types

JavaScript defines its own data types. Some of these data types correspond
directly to their C counterparts. Others, such as JSQbj ect , j sdoubl e, and
JSStri ng, are specific to JavaScript.

Generally, you declare and use JS data types in your application just as you do
standard C data types. The JS engine, however, keeps separate track of JS data
type variables that require more than a word of storage: JSQbj ect

j sdoubl e, and JSSt ri ng. Periodically, the engine examines these variables
to see if they are still in use, and if they are not, it garbage collects them,
freeing the storage space for reuse.

Garbage collection makes effective reuse of the heap, but overly frequent
garbage collection may be a performance issue. You can control the
approximate frequency of garbage collection based on the size of the JS run
time you allocate for your application in relation to the number of JS variables
and obijects your application uses. If your application creates and uses many JS
objects and variables, you may want to allocate a sufficiently large run time to
reduce the likelihood of frequent garbage collection.

18 JavaScript C Engine API Reference

Note

Working

Working with JS Values

Your application can also call JS_GC or JS_MaybeGC to force garbage
collection at any time. JS_GC forces garbage collection. JS_MaybeGC
performs conditional garbage collection only if a certain percentage of space
initially allocated to the run time is in use at the time you invoke the function.

with JS Values

In addition to JS data types, the JS engine also uses JS values, called j sval s. A
j sval is essentially a pointer to any JS data type except integers. For integers,
aj sval contains the integer value itself. In other cases, the pointer is encoded
to contain additional information about the type of data to which it points.
Using j sval s improves engine efficiency, and permits many API functions to
handle a variety of underlying data types.

The engine API contains a group of macros that test the JS data type of a jsval.
The following table lists these macros:

Macro Macro Macro
JSVAL_IS_OBIJECT JSVAL_IS_NUMBER JSVAL_IS_INT
JSVAL_IS_DOUBLE JSVAL_IS_STRING JSVAL_IS_BOOLEAN

Besides testing a j sval for its underlying data type, you can test it to
determine if it is a primitive JS data type (JSVAL_I S_PRI M TI VE). Primitives
are values that are undefined, null, boolean, numeric, or string types.

You can also test the value pointed to by a j sval to see if it is NULL
(JSVAL_I S_NULL) or voi d (JSVAL_I S_VA D).

If aj sval pointsto aJS data type of JSObj ect, j sdoubl e, orj sstr, you
can cast the jsval to its underlying data type using JSVAL_TO_OBJECT,
JSVAL_TO DOUBLE, and JSVAL_TO_STRI NG, respectively. This is useful in
some cases where your application or a JS engine call requires a variable or
argument of a specific data type, rather than a j sval . Similarly, you can
convert a JSObj ect , j sdoubl e, and j sstr to aj sval using
OBJECT_TO JSVAL, DOUBLE_TO JSVAL, and STRI NG _TO JSVAL,
respectively.

Chapter 1, Overview of the JavaScript C Engine 19

Working with JS Strings

Working with JS Strings

Much of the work you do in JavaScript will involve strings. The JS engine
implements a JS string type, JSSt ri ng, and a pointer to a JS character array,
j schar, used for handling Unicode-encoded strings. The engine also
implements a rich set of general and Unicode string management routines.
Finally, the JS engine offers support for interned strings, where two or more
separate invocations of string creation can share a single string instance in
memory. For strings of type JSSt ri ng, the engine tracks and manages string
resources.

In general, when you are manipulating strings used by the JS engine, you
should use the JS API string-handling functions for creating and copying strings.
There are string management routines for creating both null-terminated strings
and for creating strings of specific length. There are also routines for
determining string length and comparing strings.

Unicode String Support

As with other API calls, the names of Unicode-enabled API string functions
correspond one-for-one with the standard engine API string function names as
follows: if a standard function name is JS_NewSt ri ngCopyN, the
corresponding Unicode version of the function is JS_NewUCSt ri ngCopyN.
Unicode-enabled API string functions are also available for interned string.

Interned String Support

To save storage space, the JS engine provides support for sharing a single
instance of a string among separate invocations. Such shared strings are called
“interned strings”. Use interned strings when you know that a particular, string
of text will be created and used more than once in an application.

The engine API offers several calls for working with interned strings:
« JS InternString, for creating or reusing a JSStri ng.

e JS InternUCStri ng, for creating or reusing a Unicode JSSt ri ng.

20 lavaScript C Engine API Reference

Managing Security

e JS InternUCStri ngN, for creating or reusing Unicode JSSt ri ng of
fixed length.

Managing Security

With JavaScript 1.3, the JS engine added security-enhanced API functions for
compiling and evaluating scripts and functions passed to the engine. The JS
security model is based on the Java principals security model. This model
provides a common security interface, but the actual security implementation is
up to you.

One common way that security is used in a JavaScript-enabled application is to
compare script origins and perhaps limit script interactions. For example, you
might compare the codebase of two or more scripts in an application and only
allow scripts from the same codebase to modify properties of scripts that share
codebases.

To implement secure JS, follow these steps:

1. Declare one or more structs of type JSPri nci pal s in your application
code.

2. Implement the functions that will provide security information to the array.
These include functions that provide an array of principals for your
application, and mechanisms for incrementing and decrementing a
reference count on the number of JS objects using a given set of principles.

3. Populate the JSPri nci pal s struct with your security information. This
information can include common codebase information.

4. At run time, compile and evaluate all scripts and functions for which you
intend to apply security using the JS API calls that require you to pass in a
JSPri nci pal s struct. The following table lists these API functions and
their purposes:

Function Purpose
JS_CompileScriptForPrincipals Compiles, but does not execute, a security-enabled script.
JS_CompileUCScriptForPrincipals Compiles, but does not execute, a security-enabled, Unicode-

encoded script.

Chapter 1, Overview of the JavaScript C Engine 21

Managing Security

JS_CompileFunctionForPrincipals
JS_CompileUCFunctionForPrincipals

JS_EvaluateScriptForPrincipals
JS_EvaluateUCScriptForPrincipals

22 JavaScript C Engine API Reference

Creates a security-enabled JS function from a text string.

Creates a JS function with security information from a Unicode-
encoded character string.

Compiles and executes a security-enabled script.

Compiles and executes a security-enabled, Unicode-encoded
character script.

Chapter

JavaScript APl Reference

This document describes the JavaScript C Engine APl Reference, the macros,
functions, and structures that comprise the JavaScript application programmer’s
interface (JS API). You can use most of these API calls, macros, and structures
to embed JavaScript support in your applications. Some of the macros and
functions defined in this APl are only for internal use, but are described here
because they are used by other API calls. Internal values are clearly labeled as
such.

Each section in this document is devoted to a different type of APl construct.
For example, Macro Definitions lists and describes all the macros that define
internal and public data types, flags, and pseudo-functions used by JavaScript.

Within each section, each macro or function definition includes the following
sections:

= Heading, the name of the macro or function defined in the API.

< Brief description. An introductory phrase denoting whether the item is a
macro or a function, whether it is for public or internal use, and a summary
of its purpose. This section is intended to let you know immediately
whether the macro or function is one that you are interested in for your
current purpose.

= Syntax statement. The actual syntax of the macro or function as it appears
in the API. For functions with multiple arguments, the syntax statement may
be followed by an annotated table of arguments.

Chapter 2, JavaScript API Reference 23

Macro Definitions

« Discussion. A full description of the macro or function, its intended
purpose, specific information about its arguments and return type, if any,
and any requirements, instructions, and limitations for using the macro or
function.

= Example. An optional section that illustrates how a macro or function might
be used in your code.

= See also. A list of related macros, functions, and type definitions that may be
of interest either because they are required or used by this macro or
function, or because they serve a similar purpose.

Macro Definitions

Note

Macros in the JS API define:

= Fixed, named values that can be substituted in source code to improve
readability and maintenance.

= Calculated, named values that may differ in value depending on the
architecture and operating system of the host machine where a script runs.

= Pseudo functions, such as JSVAL_| S_OBJECT, that offer a shorthand way to
perform logical tests, or sometimes to perform complex calculations that are
frequently used by the JavaScript engine.

The following section lists macros defined in the JS API, and notes restrictions
on their uses where applicable. For example, some macro values are used only
within certain data structures.

Many macros, structure definitions, and functions, take or return values of type
j sval . While the definition of j sval is not part of the API proper, you should
know that it is a machine word containing either an aligned pointer whose low
three bits (the tag) encode type information, or a shifted, tagged boolean or
integer value. Aj sval may represent any JS data type, although reference type
and double-precision number j sval s are actually pointers to out-of-line
storage allocated from a garbage-collected heap.

24 JavaScript C Engine API Reference

Macro Definitions

JSVAL_IS_OBIJECT

Syntax

Description

Example

See also

Macro. Determines if a specified value is a JS object.
JSVAL_|I'S_OBJECT(V)

Use JSVAL_I S _OBJECT to determine if a given JS value, v, is a JS object or
NULL. If the type tag for v is JSVAL_OBJECT, JSVAL_| S_OBJECT evaluates to

t r ue. Otherwise, it evaluates to f al se. These return types are C values, not JS
Boolean values.

The following code snippet illustrates how a JavaScript variable, Myl t em is
conditionally tested in an i f statement to see if it is a JS object.

if (JSVAL_IS OBIJECT(MItem) {

}

JSVAL_IS_NUMBER, JSVAL_IS_INT, JSVAL_IS_DOUBLE, JSVAL_IS_STRING,
JSVAL_IS_BOOLEAN, JSVAL_IS_PRIMITIVE, JSVAL_IS_NULL, JSVAL_IS_VOID,
JSVAL_IS_PRIMITIVE

JSVAL_IS_NUMBER

Syntax

Description

Example

See also

Macro. Determines if a specified value is a JS integer or double.
JSVAL_| S_NUVBER(V)

Use JSVAL_I S_NUMBER to determine if a given JS value, v, is an integer or
double value. If the type tag for v is JSVAL_I NT or JSVAL_DOUBLE,

JSVAL_|I S_NUMBER evaluates to ¢ r ue. Otherwise, it evaluates to f al se. These
return types are C values, not JS Boolean values.

The following code snippet illustrates how a JavaScript variable, Myl t em is
conditionally tested in an i f statement to see if it is a JS integer or double
value.

if (JSVAL_I'S NUMBER(M/Item)) {
.

JSVAL_IS_OBIECT, JSVAL_IS_INT, JSVAL_IS_DOUBLE, JSVAL_IS_STRING,
JSVAL_IS_BOOLEAN, JSVAL_IS_PRIMITIVE, JSVAL_IS_NULL, JSVAL_IS_VOID,
JSVAL_IS_PRIMITIVE

Chapter 2, JavaScript API Reference 25

Macro Definitions

JSVAL_ IS INT

Macro. Determines if a specified value is a JS integer data type.
Syntax JSVAL_I'S_I NT(v)

Description Use JSVAL_| S I NT to determine if a given JS value, v, is a JS integer value. If
the type tag for v is JSVAL_I NT and is not JSVAL_VQO D, JSVAL_| S I NT
evaluates to t rue. Otherwise, it evaluates to fal se. These return types are C
values, not JS Boolean values.

Example The following code snippet illustrates how a JavaScript variable, Myl t em is
conditionally tested in an i f statement to see if it is a JS integer data type.

if (JSVAL_IS_ INT(Myltem) {

}

See also JSVAL_IS_OBIJECT, JSVAL_IS_NUMBER, JSVAL_IS_DOUBLE, JSVAL_IS_STRING,
JSVAL_IS_BOOLEAN, JSVAL_IS_PRIMITIVE, JSVAL_IS_NULL, JSVAL_IS_VOID,
JSVAL_IS_PRIMITIVE

JSVAL_IS_DOUBLE

Macro. Determines if a specified JS value is a JS double data type.
Syntax JSVAL_| S_DOUBLE(V)

Description Use JSVAL_| S_DOUBLE to determine if a given value, v, is a JS double value. If
the type tag for v is JSVAL_DOUBLE, JSVAL_| S_DOUBLE evaluates to ¢ r ue.
Otherwise, it evaluates to f al se. These return types are C values, not JS
Boolean values.

Example The following code snippet illustrates how a JavaScript variable, Myl t em is
conditionally tested in an i f statement to see if it is a JS double data type.

if (JSVAL_IS DOUBLE(Myltem)) {

Seealso JSVAL_IS_OBJECT, JSVAL_IS_NUMBER, JSVAL_IS_INT, JSVAL_IS_STRING,
JSVAL_IS_BOOLEAN, JSVAL_IS_PRIMITIVE, JSVAL_IS_NULL, JSVAL_IS_VOID,
JSVAL_IS_PRIMITIVE

26 lavaScript C Engine API Reference

Macro Definitions

JSVAL_IS_STRING

Syntax

Description

Example

See also

Macro. Determines if a specified JS value is a JS string data type.
JSVAL_I'S_STRI NG V)

Use JSVAL_|I S STRI NGto determine if a given JS value, v, is a JS string. If the
type tag for v is JSVAL_STRI NG, JSVAL_|I S_STRI NG evaluates to ¢ r ue.
Otherwise, it evaluates to fal se. These return types are C values, not JS
Boolean values.

The following code snippet illustrates how a JavaScript variable, Myl t em is
conditionally tested in an i f statement to see if it is a JS string data type.

if (JSVAL_IS_ STRING(MWItem) {

}

JSVAL_IS_OBIJECT, JSVAL_IS_NUMBER, JSVAL_IS_INT, JSVAL_IS_DOUBLE,
JSVAL_IS_BOOLEAN, JSVAL_IS_PRIMITIVE, JSVAL_IS_NULL, JSVAL_IS_VOID,
JSVAL_IS_PRIMITIVE

JSVAL_IS_ BOOLEAN

Syntax

Description

Example

See also

Macro. Determines if a specified value is a JS Boolean data type.
JSVAL_|I'S_BOOLEAN(V)

Use JSVAL_| S_BOOLEAN to determine if a given value, v, is a JS Boolean value.
If the type tag for v is JSVAL_BOOLEAN, JSVAL_| S_BOOLEAN evaluates to t r ue.
Otherwise, it evaluates to f al se. These return types are C values, not JS
Boolean values.

The following code snippet illustrates how a JavaScript variable, Myl t em is
conditionally tested in an i f statement to see if it is a JS Boolean data type.

if (JSVAL_IS_ BOOLEAN(MyItem) {

JSVAL_IS_OBIECT, JSVAL_IS_NUMBER, JSVAL_IS_INT, JSVAL_IS_DOUBLE,
JSVAL_IS_STRING, JSVAL_IS_PRIMITIVE, JSVAL_IS_NULL, JSVAL_IS_VOID,
JSVAL_IS_PRIMITIVE

Chapter 2, JavaScript API Reference 27

Macro Definitions

JSVAL IS NULL

Syntax

Description

Note

Example

See also

Macro. Determines if a specified JS value is null.
JSVAL_|'S NULL(V)

Use JSVAL_| S_NULL to determine if a given JS value, v, contains a null value. If
v iS JSVAL_NULL, JSVAL | S NULL evaluates to t r ue. Otherwise, it evaluates to
f al se. These return types are C values, not JS Boolean values.

Even though v may contain a null value, its type tag is always JSVAL_OBJECT.

The following code snippet illustrates how a JavaScript variable, MyI t em is
conditionally tested in an i f statement to see if it contains a null value.

if (JSVAL_IS NULL(M/Item)) {

}

JSVAL_IS_OBIECT, JSVAL_IS_NUMBER, JSVAL_IS_INT, JSVAL_IS_DOUBLE,
JSVAL_IS_STRING, JSVAL_IS_BOOLEAN, JSVAL_IS_PRIMITIVE,
JSVAL_IS_VOID, JSVAL_IS_PRIMITIVE

JSVAL_IS_PRIMITIVE

Syntax

Description

See also

Macro. Determines if a given JS value is a primitive type.
JSVAL_I'S_PRI M TI VE(V)

Use JSVAL_I S_PRI M TVE to determine if a specified jsval, v, is an instrinsic JS
primitive. Primitves are values that are undefined, null, boolean, numeric, or
string types. If v is one of these, JSVAL_I S_PRI M TVE returns true. If v is an
object, JSVAL_I S_PRI M TI VE returns false.

JSVAL_IS_OBIECT, JSVAL_IS_NUMBER, JSVAL_IS_INT, JSVAL_IS_DOUBLE,
JSVAL_IS_STRING, JSVAL_IS_BOOLEAN, JSVAL_IS_VOID, JSVAL_IS_NULL,
JSVAL_IS_PRIMITIVE

JSVAL_IS_VOID

Macro. Determines if a specified JS value is void.

28 lavaScript C Engine API Reference

Syntax

Description

Note

Example

See also

Macro Definitions

JSVAL_I'S VO D(V)

Use JSVAL_I S VO D to determine if a given value, v, is void. If v is
JSVAL_VQA D, JSVAL_| S VA D evaluates to t r ue. Otherwise, it evaluates to
f al se. These return types are C values, not JS Boolean values.

In JavaScript and in the ECMA language standard, the C type, voi d, indicates an
“undefined” value.

The following code snippet illustrates how a JavaScript variable, Myl t em is
conditionally tested in ani f statement to see if it is void.

if (JSVAL_IS VO D(MItem) {

}

JSVAL_IS_OBIECT, JSVAL_IS_NUMBER, JSVAL_IS_INT, JSVAL_IS_DOUBLE,
JSVAL_IS_STRING, JSVAL_IS_BOOLEAN, JSVAL_IS_PRIMITIVE,
JSVAL_IS_NULL, JSVAL_IS_PRIMITIVE

JSVAL IS GCTHING

Syntax

Description

See also

Macro. Internal use only. Indicates whether or not a JS value must be garbage
collected.

JSVAL_| S_GCTHI N& v)

JSVAL_| S_GCTHI NG determines whether or not a specified JS value, v, is a
pointer to value that must be garbage collected. JavaScript performs automatic
garbage collection of objects, strings, and doubles. If the type tag for v is not
JSVAL_I NT and it is not JSVAL_BOOLEAN, JSVAL_| S_GCTHI NG evaluates to

t rue. Otherwise it evaluates to f al se.

JSVAL_TO_GCTHING

JSVAL TO GCTHING

Syntax

Macro. Clears the type tag for specified JS value, so that the JS value can be
garbage collected if it is a string, object, or number.

JSVAL_TO_GCTHI N& v)

Chapter 2, JavaScript API Reference 29

Macro Definitions

Description

See also

JSVAL_TO _GCTHI NG clears the type tag for a specified JS value, v, so the JS
value can be garbage collected if it is a string, object, or number. It does so by
clearing the type tag, which results in clean pointer to the storage area for v.
The resulting value is cast to a void pointer.

JSVAL_IS_GCTHING

JSVAL_TO_OBJECT

Syntax

Description

Note

See also

Macro. Casts the type tag for a specified JS value and returns a pointer to the
value cast as a JS object.

JSVAL_TO OBJECT(v)

JSVAL_TO OBJECT clears a specified JS value, v, to a JS object. It does so by
casting the value’s type tag and casting the result to an object pointer.

Casting v to an object pointer manipulates its underlying type tag. v must be an
object jsval. Casting does not convert the value stored in v to a different data
type. To perform actual data type conversion, use the JS Val ueToQbj ect
function.

This macro assumes that the JS type tag for v is already JSVAL_OBJECT.
Because JS values are represented as bit-shifted C integers, comparisons of
JSVAL_TO OBJECT(v) to v itself are not equal unless you ignore the C pointer
type mismatch and v is an object reference.

JSVAL_TO_GCTHING, JSVAL_TO_DOUBLE, JSVAL_TO_STRING,
OBIJECT_TO_JSVAL, DOUBLE_TO JSVAL, STRING_TO JSVAL,
JS_ValueToObject

JSVAL_TO_DOUBLE

Syntax

Description

Macro. Casts the type flag for a specified JS value and returns a pointer to the
value cast as a JS double.

JSVAL_TO DOUBLE(V)

JSVAL_TO DOUBLE casts a specified JS value, v, to a JS double. It does so by
casting the value’s type tag and casting the result to a double pointer.

30 lavaScript C Engine API Reference

Note

See also

Macro Definitions

Clearing v to a double pointer manipulates its underlying type tag. It does not
convert the value stored in v to a different data type. To perform actual data
conversion, use the JS_Val ueToNunber function.

This macro assumes that the JS type tag for v is already JSVAL_DOUBLE.
Because JS values are represented as bit-shifted C integers, comparisons of
JSVAL_TO DOUBLE(v) to v itself are not equal unless you ignore the C pointer
type mismatch and v is an object reference.

JSVAL_TO_GCTHING, JSVAL_TO_OBJECT, JSVAL_TO_STRING,
OBIJECT_TO_JSVAL, DOUBLE_TO JSVAL, STRING_TO JSVAL,
JS_ValueToNumber

JSVAL_TO_STRING

Syntax

Description

Note

See also

Macro. Casts the type tag for a specified JS value and returns a pointer to the
value cast as a JS string.

JSVAL_TO_STRI NG v)

JSVAL_TO STRI NG casts a specified JS value, v, to a JS string. It does so by
casting the value’s type tag and casting the result to a string pointer.

Casting v to a string pointer manipulate its underlying type tag. It does not
convert the value stored in v to a different data type. To perform actual data
type conversion, use the JS_Val ueToSt ri ng function.

This macro assumes that the JS type tag for v is already JSVAL_STRI NG
Because JS values are represented as bit-shifted C integers, comparisons of
JSVAL_TO STRI NE v) to v itself are not equal unless you ignore the C pointer
type mismatch and v is an object reference.

JSVAL_TO_GCTHING, JSVAL_TO_OBJECT, JSVAL_TO_STRING,
OBJECT_TO_JSVAL, DOUBLE_TO_JSVAL, STRING_TO_JSVAL,
JS_ValueToString

OBJECT TO JSVAL

Syntax

Macro. Casts a specified JS object to a JS value.

OBJECT_TO JSVAL(0obj)

Chapter 2, JavaScript API Reference 31

Macro Definitions

Description

See also

OBJECT_TO_JSVAL casts a specified JS object, obj , to a JS value.

DOUBLE_TO_JSVAL, STRING_TO_JSVAL

DOUBLE_TO_JSVAL

Syntax

Description

See also

STRING

Syntax

Description

See also

Macro. Casts a specified JS double to a JS value.
DOUBLE_TO JSVAL(dp)

DOUBLE_TO JSVAL casts a specified JS double type, dp, to a JS value, j sval .
First it sets the double’s data type flag to JSVAL_DOUBLE and then performs the
cast.

OBIJECT_TO_JSVAL, STRING_TO_JSVAL

TO_JSVAL

Macro. Casts a specified JS string to a JS value.
STRI NG TO JSVAL(str)

STRI NG_TO_JSVAL casts a specified JS string type, str, to a JS value, j sval .
First it sets the string’s data type flag to JSVAL_STRI NG and then performs the
cast.

OBJECT_TO_JSVAL, DOUBLE_TO_JSVAL

JSVAL_LOCK

Syntax

Description

Deprecated. Locks a JS value to prevent garbage collection on it.
JSVAL_LOCK(cx, V)

JSVAL_LOCK is a deprecated feature that is supported only for backward
compatibility with existing applications. To lock a value, use local roots with
JS_AddRoot.

32 lavaScript C Engine API Reference

See also

Macro Definitions

JSVAL_LOCK locks a JS value, v, to prevent the value from being garbage
collected. v is a JS object, string, or double value. Locking operations take
place within a specified JS context, cx.

JSVAL_LOCK determines if v is an object, string, or double value, and if it is, it
locks the value. If locking is successful, or v already cannot be garbage
collected because it is not an object, string, or double value, JSVAL_LOCK
evaluates to t r ue. Otherwise JSVAL_LOCK evaluates to f al se.

JS_AddRoot, JSVAL_IS_GCTHING, JSVAL_TO_GCTHING, JSVAL_UNLOCK,
JS_LockGCThing

JSVAL_UNLOCK

Syntax

Description

See also

Deprecated. Unlocks a JS value, enabling garbage collection on it.
JSVAL_UNLOCK(cX, V)

JSVAL_UNLOCK is a deprecated feature that is supported only for backward
compatibility with existing applications. To unlock a value, use local roots with
JS_RemoveRoot.

JSVAL_UNLOCK unlocks a previously locked JS value, v, so it can be garbage
collected. v is a JS object, string, or double value. Unlocking operations take
place within a specified JS context, cx.

JSVAL_UNLOCK determine if v is an object, string, or double value, and if it is, it
unlocks the value. If unlocking is successful, or v is not affected by garbage
collection because it is not an object, string, or double value, JSVAL_UNLOCK
evaluates to t r ue. Otherwise JSVAL_UNLOCK evaluates to f al se.

JS_AddRoot, JSVAL_IS_GCTHING, JSVAL_TO_GCTHING, JSVAL_LOCK,
JS_LockGCThing

INT_FITS_IN_JSVAL

Syntax

Macro. Determines if a specified value is a valid JS integer.

INT_FITS I N _JSVAL(i)

Chapter 2, JavaScript API Reference 33

Macro Definitions

Description

Example

See also

Determines if a specified C integer value, i, lies within the minimum and
maximum ranges allowed for a j sval integer. If the value is within range, it
can become a valid JS integer, and | NT_FI TS_I N_JSVAL is t r ue. Otherwise
I NT_FI TS I N_JSVAL is fal se.

The following code snippet illustrates how a JavaScript variable, Myl t em is
conditionally tested in an i f statement to see if it is a legal integer value.
if (INT_FITS_IN_JSVAL(M/Iten)) {

}

el se
JS_ReportError(MyContext, “Integer out of range: %s”,
Myltem);

JSVAL_TO_INT, INT_TO_JSVAL

JSVAL TO_INT

Syntax

Description

See also

Macro. Converts a JS integer value to an integer.
JSVAL_TO I NT(v)

JSVAL_TO | NT converts a specified JS integer value, v, to a C integer value by
performing a bitwise right shift operation. JSVAL_TO_| NT assumes that it was
passed a JS value of type JSVAL_I NT, and returns that JS value’s corresponding
C integer value. Note that because of the bit-shifting operation, that a C
comparison of JSVAL_TO | NT(v) to v always results in nonequality.

INT_TO_JSVAL, JSVAL_TO_BOOLEAN, JSVAL_TO_PRIVATE

INT_TO _JSVAL

Syntax

Description

See also

Macro. Converts a specified integer value to a JS integer value.
I NT_TO JSVAL(i)

I NT_TO_JSVAL converts a C integer, i , to a JS integer value type using a bitwise
left shift operation and OR'ing the result with the JSVAL_I NT macro.

JSVAL_TO_INT, BOOLEAN_TO_JSVAL, PRIVATE_TO_JSVAL

34 JavaScript C Engine API Reference

Macro Definitions

JSVAL_TO_BOOLEAN

Macro. Converts a JS value to a C t rue or f al se value.
Syntax JSVAL_TO BOOLEAN(v)

Description JSVAL_TO BOOLEAN converts a specified JS value, v, toa Ctrue or fal se
value by performing a bitwise right shift operation. JSVAL_TO BOOLEAN
assumes that it was passed a JS value of type JSVAL_BOOLEAN, and returns that
JS value’s corresponding C integer value.

See also BOOLEAN_TO_JSVAL, JSVAL_TO_INT, JSVAL_TO_PRIVATE

BOOLEAN_TO_JSVAL

Macro. Converts a specified C t rue or f al se value to a JS value.
Syntax BOOLEAN TO JSVAL(b)

Description BOOLEAN TO JSVAL converts a C true or f al se value, b, to a JS Boolean value
type using a bitwise left shift operation and setting the data type flag to
JSVAL_BOOLEAN.

Seealso JSVAL TO BOOLEAN, INT_TO JSVAL, PRIVATE_TO JSVAL

JSVAL_TO_PRIVATE

Macro. Casts a JS value to a private data pointer.
Syntax JSVAL_TO PRI VATE(V)

Description JSVAL_TO PRI VATE casts a JS value, v, to a void pointer to private data. Private
data is associated with an JS class on which the JSCLASS HAS PRI VATE
attribute is set. Private data is user-allocated, defined, and maintained. Private
pointers must be word aligned.

JSVAL_TO PRI VATE returns an integer pointer cast as a void pointer.

See also PRIVATE_TO_JSVAL, JSCLASS_HAS_PRIVATE

Chapter 2, JavaScript API Reference 35

Macro Definitions

PRIVATE_TO_JSVAL

Syntax

Description

See also

JSPROP_

Syntax

Description

Note

Example

Macro. Casts a private data pointer to a JS integer value.
PRI VATE_TO_JSVAL(p)

PRI VATE_TO _JSVAL enables you to store a private data pointer, p, as a JS value.
The private pointer must be word-aligned. Before passing a pointer to

PRI VATE_TO JSVAL, test it with | NT_FI TS_I N_JSVAL to be verify that the
pointer can be cast to a legal JS integer value.

PRI VATE_TO_JSVAL casts a pointer to a JS integer value and sets the
JSVAL_I NT type tag on it.

JSVAL_TO_PRIVATE, INT_FITS_IN_JSVAL

ENUMERATE

Macro. Public.Flag that indicates a property is visible to for and in loops.
JSPROP_ENUMERATE

JSPROP_ENUMERATE is a flag value that indicates a property belonging to a JS
object is visible to for and in loops. JSPROP_ENUVERATE is used to set or clear
the f 1 ags field in a JSPr opert ySpec structure so that a property can be made
visible or invisible to loops.

Property flags cannot be changed at run time. Instead, you either pass a set of
flags as an argument to JS_Def i nePr operty to create a single property with
fixed flag values, or you set property flags in a JSPr oper t ySpec struct which is
then passed to the JS_Def i neProperti es function to create multiple
properties on a single object.

The following code fragment illustrates how JSPROP_ENUMERATE can be set for
a property structure before you call JS_Def i neProperti es:

JSPropertySpec MyProperty;

MyProperty.flags = MyProperty.flags | JSPROP_ENUVERATE;

36 lavaScript C Engine API Reference

See also

JSPROP_

Syntax

Description

Note

See also

JSPROP_

Syntax

Macro Definitions

The following code fragment illustrates how JSPROP_ENUMERATE can be
cleared for a property structure before you call JS_Def i neProperti es:

JSPropertySpec MyProperty;

MyProperty.flags = MyProperty. flags & ~JSPROP_ENUMERATE;

JSPROP_READONLY, JSPROP_PERMANENT, JSPROP_EXPORTED,
JSPROP_INDEX, JSPropertySpec, JS_DefineProperty, JS_DefineProperties

READONLY

Macro. Flag that indicates a property is read only.
JSPROP_READONLY

JSPROP_READONLY is a flag value that indicates that the value for a property
belonging to a JS object cannot be set a run time. For JavaScript 1.2 and lower,
it is an error to attempt to assign a value to a property marked with the
JSPROP_READONLY flag. In JavaScript 1.3 and ECMA-Script, attempts to set a
value on a read-only property are ignored. You can, however, always check the
f1 ags fields to determine if a property is read only.

Property flags cannot be changed at run time. Instead, you either pass a set of
flags as an argument to JS_Def i nePr operty to create a single property with
fixed flag values, or you set property flags in a JSPr oper t ySpec struct which is
then passed to the JS_Def i neProperti es function to create multiple
properties on a single object.

JSPROP_ENUMERATE, JSPROP_PERMANENT, JSPROP_EXPORTED,
JSPROP_INDEX, JSPropertySpec, JS_DefineProperty, JS_DefineProperties

PERMANENT

Macro. Flag that indicates a property is permanent and cannot be deleted.

JSPROP_PERVANENT

Chapter 2, JavaScript API Reference 37

Macro Definitions

Description

Note

See also

JSPROP_

Syntax

Description

Note

See also

JSPROP_

Syntax

JSPROP_PERMANENT is a flag value that indicates that the property belonging to
a JS object is a “permanent” property, one that cannot be deleted from the
object at run time. Attempting to delete a permanent property is JavaScript 1.2
or lower results in an error. In JavaScript 1.3 and ECMA-Script, such deletion
attempts are ignored. You can, however, always check the f | ags fields to
determine if a property is permanent.

Property flags cannot be changed at run time. Instead, you either pass a set of
flags as an argument to JS_Def i nePr operty to create a single property with
fixed flag values, or you set property flags in a JSPr oper t ySpec struct which is
then passed to the JS_Def i neProperti es function to create multiple
properties on a single object.

JSPROP_ENUMERATE, JSPROP_READONLY, JSPROP_EXPORTED,
JSPROP_INDEX, JSPropertySpec, JS_DefineProperty, JS_DefineProperties

EXPORTED

Macro. Flag that indicates a property is exported from a JS object.
JSPROP_EXPORTED

JSPROP_EXPORTED is a flag value that indicates that a property can be imported
by other scripts or objects, typically to borrow security privileges.

Property flags cannot be changed at run time. Instead, you either pass a set of
flags as an argument to JS_Def i nePr operty to create a single property with
fixed flag values, or you set property flags in a JSPr oper t ySpec struct which is
then passed to the JS_Def i neProperti es function to create multiple
properties on a single object.

JSPROP_ENUMERATE, JSPROP_READONLY, JSPROP_PERMANENT,
JSPROP_INDEX, JSPropertySpec, JS_DefineProperty, JS_DefineProperties

INDEX

Macro. Flag that indicates a property’s name is actually an index number into
an array.

JSPROP_| NDEX

38 lavaScript C Engine API Reference

Description

Note

See also

Macro Definitions

JSPROP_| NDEX is a flag value that indicates a property’s name will
automatically be cast to an integer value to use as an index into an array of
property values (elements).

Property flags cannot be changed at run time. Instead, you either pass a set of
flags as an argument to JS_Def i nePr operty to create a single property with
fixed flag values, or you set property flags in a JSPr oper t ySpec struct which is
then passed to the JS_Def i neProperti es function to create multiple
properties on a single object.

JSPROP_ENUMERATE, JSPROP_READONLY, JSPROP_PERMANENT,
JSPROP_EXPORTED, JSPropertySpec, JS_DefineProperty, JS_DefineProperties

JSFUN_BOUND_METHOD

Syntax

Description

Note

See also

Deprecated. Macro. Flag that indicates a function nominally associated with an
object is bound, instead, to that object’s parent.

JSFUN_BOUND_METHOD

This macro is deprecated. JSFUN_ BOUND _NMETHOD is a flag that indicates a
method associated with an object is bound to the object’s parent. This macro is
no longer needed because the JS engine now supports closures.

This macro exists only for backward compatibility with existing applications. Its
use is deprecated. Future versions of the JavaScript engine may not support or
recognize this macro.

JSFUN_GLOBAL_PARENT

JSFUN_GLOBAL_PARENT

Syntax

Deprecated. Macro. Flag that indicates a call to a function nominally associated
with an object is called with the global object as its scope chain, rather than
with the parent of the function.

JSFUN_GLOBAL_PARENT

Chapter 2, JavaScript API Reference 39

Macro Definitions

Description

Note

See also

This macro is deprecated. Instead of using it, use JS_Cl oneFunct i onOhj ect .
JSFUN_GLOBAL_PARENT is a flag that indicates a call to a function nominally
associated with an object is called with the global object as its scope chain,
rather than with the parent of the function. This permits the function to operate
on free variables in the larger scope when they are found through prototype
lookups.

This macro exists only for backward compatibility with existing applications. Its
use is deprecated. Future versions of the JavaScript engine may not support or
recognize this macro.

JSFUN_BOUND_METHOD

JSVAL_VOID

Syntax

Description

See also

Macro. Defines a void JS value.
JSVAL_VO D

JSVAL_VA D defines a void JS value. Currently this value is defined as
0- JSVAL_I NT_POV2(30) .

JSVAL_NULL, JSVAL_ZERO, JSVAL_ONE, JSVAL_FALSE, JSVAL_TRUE,
JS_NewContext

JSVAL_NULL

Syntax

Description

See also

Macro. Defines a null JS value.
JSVAL_NULL

JSVAL_NULL defines a null JS value. Currently this value is defined as
OBJECT_TO JSVAL(0).

OBJECT_TO_JSVAL, JSVAL_VOID, JSVAL_ZERO, JSVAL_ONE, JSVAL_FALSE,
JSVAL_TRUE, JS_NewContext

40 JavaScript C Engine API Reference

Macro Definitions

JSVAL_ZERO

Syntax

Description

See also

Macro. Defines a JS value of 0.
JSVAL_ZERO

JSVAL_ZERO defines a JS value of 0. Currently this value is defined as
| NT_TO JSVAL(0).

INT_TO_JSVAL, JSVAL_VOID, JSVAL_NULL, JSVAL_ONE, JSVAL_FALSE,
JSVAL_TRUE, JS_NewContext

JSVAL_ONE

Syntax

Description

See also

Macro. Defines a JS value of 1.
JSVAL_ONE

JSVAL_ZERO defines a JS value of 1. Currently this value is defined as
I NT_TO JSVAL(1).

INT_TO_JSVAL, JSVAL_VOID, JSVAL_NULL, JSVAL_ZERO, JSVAL_FALSE,
JSVAL_TRUE, JS_NewContext

JSVAL_FALSE

Syntax

Description

Note

See also

Macro. Defines a false JS Boolean value.

JSVAL_FALSE

JSVAL_FALSE defines a false JS Boolean value. Currently this value is defined
as BOOLEAN TO JSVAL(JS_FALSE).

Do not compare JSVAL_FALSE with JS_FALSE in logical operations. These
values are not equal.

BOOLEAN_TO_JSVAL, JSVAL_VOID, JSVAL_NULL, JSVAL_ZERO, JSVAL_ONE,
JSVAL_TRUE, JS_NewContext

Chapter 2, JavaScript API Reference 41

Macro Definitions

JSVAL_TRUE

Syntax

Description

Note

See also

Macro. Defines a true JS Boolean value.
JSVAL_TRUE

JSVAL_TRUE defines a true JS Boolean value. Currently this value is defined as
BOOLEAN TO JSVAL(JS TRUE).

Do not compare JSVAL_TRUE with JS_TRUE in logical operations. These values
are not equal.

BOOLEAN_TO_JSVAL, JSVAL_VOID, JSVAL_NULL, JSVAL_ZERO, JSVAL_ONE,
JSVAL_FALSE, JS_NewContext

JSCLASS HAS_PRIVATE

Syntax

Description

See also

Macro. Flag that indicates a class instance has a private data slot.
JSCLASS_HAS_PRI VATE

JSCLASS_HAS_PRI VATE can be specified in the f | ags field of a JSO ass struct
to indicate that a class instance has a private data slot. Set this flag if class
instances should be allowed to use the JS Get Private and JS Set Pri vate
functions to store and retrieve private data.

JSClass

JSCLASS_NEW_ENUMERATE

Syntax

Description

See also

Macro. Flag that indicates that the JSNewEnunrer at eOp method is defined for a
class.

JSCLASS_NEW EUMERATE

JSCLASS NEW ENUMERATE can be specified in the f | ags field of a JSO ass
struct to indicate that a class instance defines the JSNewEnuner at eOp method.
This method is used for property enumerations when a class defines the

get Qbj ect Ops field.

JSCLASS_HAS_PRIVATE, JSCLASS_NEW_RESOLVE, JSClass, JSObjectOps

42 JavaScript C Engine API Reference

Macro Definitions

JSCLASS _NEW_RESOLVE

Syntax

Description

See also

Macro. Flag that indicates that the JSNewResol veOp method is defined for a
class.

JSCLASS_NEW RESCLVE

JSCLASS_NEW RESQOLVE can be specified inthe f | ags field of a JSO ass struct
to indicate that a class instance defines the JSNewResol veOp method. This
method is used for property resolutions when a class defines the

get Qbj ect Ops field.

JSCLASS_HAS_PRIVATE, JSCLASS_NEW_ENUMERATE, JSClass, JSObjectOps

JSPRINCIPALS_HOLD

Syntax

Description

Example

See also

Macro. Increments the reference count for a specified JSPri nci pal s struct.
JSPRI NCI PALS_HOLD(cx, princi pal s)

JSPRI NCI PALS_HOLD maintains the specified principals in a JSPri nci pal s
struct, pri nci pal s, for a specified JS context, cx. Principals are used by the JS
security mechanism. The hold is maintained by incrementing the reference
count field in the struct by 1.

The following code increments the principals reference count for the
MyPri nci pal s struct:

JSPrinci pals MyPrinci pal s;
JSCont ext * MyCont ext;
JSRuntinme *rt;

rt = Js_Init(32768);
MyContext = JS NewContext(rt, 16384);

JSPRI NCI PALS_HOLD(MyCont ext, MyPri nci pal s);

JSPRINCIPALS_DROP, JSPrincipals, JS_Init, JS_NewContext

Chapter 2, JavaScript API Reference 43

Macro Definitions

JSPRINCIPALS_DROP

Macro. Decrements the reference count for a specified JSPri nci pal s struct,
and destroys the principals if the reference count is 0.

Syntax JSPRI NCl PALS_DROP(cx, principal s)

Description JSPRI NCI PALS_DROP decrements the specified principals in a JSPri nci pal s
struct, pri nci pal s, for a specified JS context, cx. The principals are dropped
by deccrementing the reference count field in the struct by 1. If the reference
count drops to zero, then JSPRI NCI PALS DROP also destroys the principals.

Example The following code decrements the principals reference count for the
MyPrinci pal s struct, destroying the principals as well:

JSPrinci pals MyPrinci pal s;
JSCont ext * MyCont ext;
JSRuntinme *rt;

rt = Js_Init(32768);
MyContext = JS NewContext(rt, 16384);

JSPRI NCI PALS_HOLD(MyCont ext, MyPri nci pal s);

JSPRI NCI PALS_DROP(MyCont ext, MyPri nci pal s);

See also JSPRINCIPALS HOLD, JSPrincipals, JS_Init, JS_NewContext

JS_NewRuntime

Macro. Initializes the JavaScript run time.

Syntax JS_NewRunti me(maxbytes);

44 JavaScript C Engine API Reference

Description

See also

Macro Definitions

JS_NewRunt i ne initializes the JavaScript run time environment. Call
JS_NewRunt i me before making any other API calls. JS_NewRunt i me allocates
memory for the JS run time, and initializes certain internal run time structures.
maxbyt es specifies the number of allocated bytes after which garbage
collection is run.

Generally speaking, most applications need only one JS run time. Each run time
is capable of handling multiple execution threads. You only need multiple run
times if your application requires completely separate JS engines that cannot
share values, objects, and functions.

If 3S_NewRunt i me is successful, it returns a pointer to the run time. Otherwise
it returns NULL.

JS_DestroyRuntime

JS_DestroyRuntime

Syntax

Description

See also

Macro. Frees the JavaScript run time.
JS_DestroyRuntinme(rt);

JS_DestroyRunti me frees the specified the JavaScript run time environment,
rt. Call JS_Dest royRunt i ne after completing all other JS API calls.
JS_DestroyRunt i me garbage collects and frees the memory previously
allocated by JS_NewRunt i ne.

JS_NewRuntime

JSRESOLVE_QUALIFIED

Syntax

Description

See also

Macro. Flag that specifies that a function’s identify can be uniquely resolved
without examining the function prototype chain.

JSRESOLVE_QUALI FI ED

JSRESOLVE_QUALI FI ED is flag that, if included in a function’s f | ags field,
indicates that its identify can be uniquely resolved without reference to its full
prototype chain.

JSFUN_BOUND_METHOD, JSFUN_GLOBAL_PARENT, JSRESOLVE_ASSIGNING

Chapter 2, JavaScript API Reference 45

Structure Definitions

JSRESOLVE_ASSIGNING

Macro. Flag that specifies that a function’s identify can be uniquely resolved by
examining the left side of an assignment statement.

Syntax JSRESOLVE_ASSI GNI NG

Description JSRESOLVE_ASSI GNI NG is a flag that, if included in a function’s flags field,
indicates that its identity can be uniquely resolved simply by examing the left
side of an assignment statement.

See also JSFUN_BOUND_METHOD, JSFUN_GLOBAL_PARENT, JSRESOLVE_QUALIFIED

Structure Definitions

C struct definitions in the JS API define specific JavaScript data structures used
by many API functions. Key data structures define JS properties, functions, and
error reports. Others include a base class definition, a principals (secuirty)
definition, and a definition of a double value.

JSClass

Data structure. Defines a base class for use in building and maintaining JS
objects.

Syntax struct JSC ass {
char *narne;
ui nt 32 fl ags;
/* Mandatory non-null function pointer nenbers. */
JSPr opertyQp addProperty;
JSPr opertyQp del Property;
JSPropertyOp get Property;
JSPropertyOp set Property;
JSEnuner at eQp enuner at e;
JSResol veOp resol ve;
JSConvert Qp convert;
JSFinalizeQ finalize;
/* Optionally non-null nenbers start here. */
JSGet Obj ect Ops get Ohj ect Ops;
JSCheckAccessOp checkAccess;

46 JavaScript C Engine API Reference

Argument
*nane
fl ags

addPr operty
del Property
get Property
set Property
enuner at e
resol ve
convert
finalize

get Ovj ect Ops

checkAccess

cal l

construct
xdr Cbj ect

hasl nst ance

spare

Structure Definitions

JSNative call;

JSNati ve construct;

JSXDRObhj ect Op xdr Ooj ect;
JSHasl| nst anceOp hasl nst ance;
prword spare[2];

Type
char
ui nt 32

JSPropertyQp
JSPropertyQp
JSPropertyQp
JSPropertyQp

JSEnuner at eOp

JSResol ve(p
JSConvert Op
JSFinalizeQp

JSGet Obj ect Ops

Description
Class name

Class attributes. 0 indicates no attributes are set. Attributes can be one
or both of the following values OR'd together:

JSCLASS _HAS PRI VATE: class can use private data.

JSCLASS_NEW ENUMERATE: class defines get Obj ect Ops to point to
a new method for enumerating properties.

JSCLASS NEW RESCLVE: class defines get Obj ect Ops to point to a
new method for property resolution.

Method for adding a property to the class.
Method for deleting a property from the class.
Method for getting a property value.

Method for setting a property value.

Method for enumerating over class properties.
Method for resolving property ambiguities.
Method for converting property values.
Method for finalizing the class.

Pointer to an optional structure that defines method overrides for a
class. If you do not intend to override the default methods for a class,
set get Obj ect Ops to NULL.

JSCheckAccessOpPointer to an optional custom access control method for a class or

JSNat i ve

JSNat i ve

JSXDRObhj ect Op

object operations structure. If you do not intend to provide custom
access control, set this value to NULL.

Pointer to the method for calling into the object that represents this
class.

Pointer to the constructor for the object that represents this cl ass

Pointer to an optional XDR object and its methods. If you do not use
XDR, set this value to NULL.

JSHas| nst anceQpPointer to an optional hasl nst ance method for this object. If you do

prwor d

not provide a method for hasl nst ance, set this pointer to NULL.
Reserved for future use.

Chapter 2, JavaScript API Reference 47

Structure Definitions

Description

See also

Use JSO ass to define a base class used in object creation and manipulation.
In your applications, you may use JSC ass to declare a constructor function,
base properties, methods, and attributes common to a series of objects you
create.

By default, JSO ass defines a set of default property access methods that can
be used by all objects derived in whole or in part from the class. You can
define get Ohj ect Ops to point to an optional JSObj ect Qps struct that contains
pointers to an array of methods that override the default access methods. For
more information about creating method overrides, see JSObjectOps.

JSCLASS_HAS PRIVATE, JS_PropertyStub, JS_EnumerateStub, JS_ResolveStub,
JS_ConvertStub, JS_FinalizeStub, JS_InitClass, JS_GetClass, JS_InstanceOf,
JSObjectOps

JSObjectOps

Syntax

Data structure. Defines pointers to custom override methods for a class.

struct JSObj ect Ops {
/* mandatory non-null function pointer nenbers. */
JSNewObj ect MapQp newOhj ect Map;
JSOhj ect MapOp dest royQhj ect Map;
JSLookupPropOp | ookupProperty;
JSDef i nePropOp defi neProperty;
JSPropertyl dOp get Property;
JSPropertyl dOp set Property;
JSAttri butesOp getAttributes;
JSAttributesOp setAttributes;
JSPropertyl dOp del et eProperty;
JSConvert Op defaul t Val ue;
JSNewEnuner at eQp enuner at e;
JSCheckAccessl dOp checkAccess;
/* Optionally non-null nenbers. */
JSOhj ect Op t hi shj ect ;
JSPr opert yRef Op dropProperty;
JSNative call;
JSNati ve construct;
JSXDRObj ect Op xdr Qoj ect;
JSHasl nst anceOp hasl nst ance;
prword spare[2];

48 JavaScript C Engine API Reference

Argument
newObj ect Map

dest royQbj ect Map

| ookupProperty

defi neProperty

get Property

set Property

get Attri butes

set Attributes

del eteProperty

def aul t Val ue

enuner at e

checkAccess

t hi sChj ect

dr opProperty

cal l

Type

JSNewhj ect MapQp

JSObj ect MapQOp

JSLookupPropOp

JSDef i nePropQOp

JSPropertyl dOp

JSPropertyl dOp

JSAttri butesOp

JSAttributesOp

JSPr opertyl dOp

JSConvert Qp

JSNewEnuner at e

JSCheckAccessl dOp

JSOhj ect Op

JSPr oper t yRef Op

JSNat i ve

Structure Definitions

Description

Pointer to the function that creates the object map for a
class. The object map stores property information for the
object, and is created when the object is created. This
pointer cannot be NULL.

Pointer to the function that destroys the object map when it
is no longer needed. This pointer cannnot be NULL.

Pointer to a custom property lookup method for the object.
This pointer cannnot be NULL.

Pointer to a custom property creation method for the object.
This pointer cannnot be NULL.

Pointer to a custom property value retrieval method for the
object. This pointer cannnot be NULL.

Pointer to a custom property value assignment method for
the object. This pointer cannnot be NULL.

Pointer to a custom property attributes retrieval method for
the object. This pointer cannot be NULL.

Pointer to a custom property attributes assignment method
for this object. This property cannot be NULL.

Pointer to a custom method for deleting a property
belonging to this object. This pointer cannot be NULL.

Pointer to a method for converting a property value. This
pointer cannot be NULL.

Pointer to a custom method for enumerating over class
properties. This pointer cannot be NULL.

Pointer to an optional custom access control method for a
this object. This pointer cannot be NULL.

Pointer to an optional custom method that retrieves this
object. If you do not use this method, set t hi sCbj ect to
NULL.

Pointer to an optional, custom reference-counting method
that can be used to determine whether or not a property can
be deleted safely.If you do not use reference counting, set
dr opProperty to NULL.

Pointer to the method for calling into the object that
represents this class.

Chapter 2, JavaScript API Reference 49

Structure Definitions

construct

xdr Cbj ect

hasl nst ance

spare

Description

See also

JSNati ve Pointer to the constructor for the object that represents this
cl ass
JSXDRObj ect Op Pointer to an optional XDR object and its methods. If you do

not use XDR, set this value to NULL.

JSHasl nst anceOp Pointer to an optional hasl nst ance method for this
object. If you do not provide an override method for
hasl nst ance, set this pointer to NULL.

prwor d Reserved for future use.

Use JSObj ect Ops to define an optional structure of pointers to custom
property methods for a class. If you define JSOhj ect Ops, you can create
methods to override the default methods used by JSd ass.

If you create a JSObj ect Qps structure for a given class, then you must also
supply or create methods for creating and destroying the object map used by
this object, and you must create custom methods for looking up, defining,
getting, setting, and deleting properties. You must also create methods for
getting and setting property attributes, checking object access privileges,
converting property values, and enumerating properties. All other fields are
optional, and if not used, should be set to NULL.

JSClass

JSPropertySpec

Syntax

Data structure. Defines a single property for an object.

struct JSPropertySpec {
const char *nane;
int8 tinyid;
uint8 fl ags;
JSPropertyQOp getter;
JSPropertyQp setter;

50 lavaScript C Engine API Reference

b

Argument Type
*nanme const char
tinyid int8
fl ags uint8
getter JSPropertyQp
setter JSPropertyQp

Description

Structure Definitions

Description
Name to assign to the property.

Unique ID number for the property to aid in resolving get Pr operty and
set Property method calls.

Property attributes. If 0, no flags are set. Otherwise, the following attributes
can be used singly or ORd together:

JSPROP_ENUMERATE: property is visible in for loops.
JSPROP_READONLY: property is read-only.

JSPROP_PERVMANENT: property cannot be deleted.

JSPROP_EXPORTED: property can be exported outside its object.
JSPROP_| NDEX: property is actual an array element.

get Property method for the property.

set Property method for the property. Read-only properties should not
have a set Pr oper ty method.

JSPr oper t ySpec defines the attributes for a single JS property to associate with

an object. Generally, you populate an array of JSPr opert ySpec to define all
the properties for an object, and then call JS_Def i neProperti es to create the
properties and assign them to an object.

Seealso JSPROP_ENUMERATE, JSPROP_READONLY, JSPROP_PERMANENT,
JSPROP_EXPORTED, JSPROP_INDEX, JS_PropertyStub, JS_EnumerateStub,
JS_ResolveStub, JS_ConvertStub, JS_FinalizeStub, JS_DefineProperty,
JS_DefineProperties, JS_DefinePropertyWithTinyld, JS_GetProperty,
JS_SetProperty, JS_DeleteProperty

JSFunctionSpec

Data structure. Defines a single function for an object.

Syntax struct JSFunctionSpec {
const char *naneg;
JSNative call;
ui nt 8 nargs;
uint8 fl ags;
ui nt 16 extra;

Chapter 2, JavaScript API Reference 51

Structure Definitions

b

Argument Type

*nane
cal l

nar gs
fl ags

extra

const char
JSNati ve

uint8
uint8

uint16

Description
Name to assign to the function.

The built-in JS call wrapped by this function. If the function does not wrap a
native JS call, set this value to NULL.

Number of arguments to pass to this function.

Function attributes. If set to O the function has no attributes. Otherwise, existing
applications can set f | ags to either or both of the following attributes ORd:
JSFUN_BOUND_ METHOD

JSFUN_GLOBAL_PARENT

Note that these attributes are deprecated, and continue to be supported only for
backward compatibility with existing applications. New applications should not
use these attributes.

Reserved for future use.

Description JSFuct i onSpec defines the attributes for a single JS function to associate with
an object. Generally, you populate an array of JSFuncti onSpec to define all
the functions for an object, and then call JS_Def i neFunct i ons to create the
functions and assign them to an object.

JSFunct i onSpec can also be used to define an array element rather than a
named property. Array elements are actually individual properties. To define an
array element, cast the element’s index value to const char *, initialize the
nane field with it, and specify the JSPROP_I NDEX attribute in f | ags.

See also JSFUN_BOUND_METHOD, JSFUN_GLOBAL_PARENT, JS_NewFunction,
JS_GetFunctionObject, JS_GetFunctionName, JS_DefineFunctions,
JS_DefineFunction, JS_CompileFunction, JS_DecompileFunction,
JS_DecompileFunctionBody, JS_CallFunction, JS_CallFunctionName,
JS_CallFunctionValue, JS_SetBranchCallback

JSConstDoubleSpec

Data structure. Describes a double value and assigns it a name.

52 lavaScript C Engine API Reference

Syntax struct JSConst Doubl eSpec {
j sdoubl e dval ;
const char *nane;
uint8 fl ags;
uint 8 spare[3];

Structure Definitions

b

Argument Type Description

dval j sdoubl e Value for the double.

nane const char *Name to assign the double.

fl ags uint8 Attributes for the double. Currently these can be 0 or more of the following
values OR'd:
JSPROP_ENUMERATE: property is visible in for loops.
JSPROP_READONLY: property is read-only.
JSPROP_PERNMANENT: property cannot be deleted.
JSPROP_EXPORTED: property can be exported outside its object.
JSPROP_| NDEX: property is actually an array element.

spare uint8 Reserved for future use.

Description JSConst Doubl eSpecs is typically used to define a set of double values that are
assigned as properties to an object using JS_Def i neConst Doubl es.
JS_Def i neConst Doubl es creates one or more double properties for a
specified object.

JS_Defi neConst Doubl es takes an argument that is a pointer to an array of
JSConst Doubl eSpecs. Each array element defines a single property name and
property value to create. The last element of the array must contain zero-valued
values. JS_Def i neConst Doubl es creates one property for each non-zero
element in the array.

Seealso JSVAL_IS_DOUBLE, JSVAL_TO_DOUBLE, DOUBLE_TO JSVAL,
JS_ValueToNumber, JS_NewDouble, JS NewDoubleValue,
JS_DefineConstDoubles

JSPrincipals

Data structure. Defines security information for an object or script.

Syntax typedef struct JSPrincipals {

char *codebase;

voi d *(*get Principal Array) (JSCont ext *cx,
struct JSPrincipals *);

JSBool (*gl obal Privil egesEnabl ed) (JSCont ext *cx,
struct JSPrincipals *);

ui nt N refcount;

voi d (*destroy)(JSContext *cx, struct JSPrincipals *);

Chapter 2, JavaScript API Reference 53

Structure Definitions

} JSPrinci pal s;

Argument Type Description

*codebase char Pointer to the codebase for the principal.

*get Princi pal Array voi d Pointer to the function that returns an array of principal
definitions.

*gl obal Pri vi | egesEnabl ed JSBool Flag indicating whether principals are enabled globally.

r ef count ui nt N Reference count for the principals. Each reference to a
principal increments refcount by one. As principals
references are dropped, call the dest r oy method to
decrement the reference count and free the principals if
they are no longer needed.

*destroy voi d Pointer to the function that decrements the reference count
and possibly frees the principals if they are no longer in
use.

Description JSPri nci pal s is a structure that defines the connection to security data for an

object or script. Security data is defined independently of the JS engine, but is
passed to the engine through the JSPri nci pal s structure. This structure is
passed as an argument to versions of API calls that compile and evaluate scripts
and functions that depend on a security model. Some examples of security-
enhanced API call are JS_Conpi | eScri pt For Pri nci pal s,

JS Conpi | eFuncti onFor Pri nci pal s, and

JS Eval uat eScri pt For Pri nci pal s.

codebase points to the common codebase for this object or script. Only objects
and scripts that share a common codebase can interact.

get Pri nci pal Array is a pointer to the function that retrieves the principals for
this object or script.

gl obal Pri vi | egesEnabl ed is a flag that indicates whether principals are
enabled globally.

ref count is used to maintain active principals. Each time an object is
referenced, r ef count must be increased by one. Each time an object is
dereferenced, r ef count must be decremented by one. When r ef count is
zero, the principals are no longer in use and are destroyed. Use the

JSPRI NCI PALS_HOLD macro to increment r ef count , and use

JS_ PRI NCI PALS_DROP to decrement r ef count .

54 JavaScript C Engine API Reference

Structure Definitions

See also JSPRINCIPALS_HOLD, JSPRINCIPALS_DROP, JS_CompileScriptForPrincipals,
JS_CompileUCScriptForPrincipals, JS_CompileFunctionForPrincipals,
JS_CompileUCFunctionForPrincipals, JS_EvaluateScriptForPrincipals

JSErrorReport

Syntax

Argument Type
*filename const

Data structure. Describes the format of a JS error that is used either by the
internal error reporting mechanism or by a user-defined error reporting
mechanism.

struct JSErrorReport {
const char *fil enane;
ui ntN l'i neno;
const char *Ilinebuf;
const char *tokenptr;
const jschar *uclinebuf;
const jschar *uctokenptr;
3
Description
char Indicates the source file or URL that produced the error condition. If NULL,
the error is local to the script in the current HTML page.

|'i neno ui nt N Line number in the source that caused the error.

*| i nebuf const
*t okenptr const
*ucl i nebuf const
*uct okenpt r const

Description

char Text of the line that caused the error, minus the trailing newline character.
char Pointer to the error token in *1 i nebuf .
j schar Unicode line buffer. This is the buffer that contains the original data.

j schar Pointer to the error token in *ucl i nebuf .

JSEr r or Repor t describes a single error that occurs in the execution of script.

In the event of an error, fi | enanme will either contain the name of the external
source file or URL containing the script (SCRI PT SRC=) or NULL, indicating that
a script embedded in the current HTML page caused the error.

I i neno indicates the line number of the script containing the error. In the case
of an error in a script embedded in the HTML page, | i neno indicates the HTML
lineno where the script error is located.

I i nebuf is a pointer to a user-defined buffer into which JS copies the offending
line of the script.

Chapter 2, JavaScript API Reference 55

Structure Definitions

t okenpt r is a pointer into | i nebuf that identifies the precise location line of
the problem within the offending line.

ucl i nebuf is a pointer to a user-defined buffer into which JS copies the
Unicode (original) version of the offending line of script.

uct okenpt r is a pointer into ucl i nebuf that identifies the precise location line
of the problem within the offending Unicode (original) version of the offending
line.

To use JSErr or Repor t, your application must define a variable of type
JSError Report and allocate a buffer to hold the text that generated the error
condition. Set | i nebuf to point at the buffer before your application executes a
script. For Unicode scripts, define a second buffer that holds the Unicode
version of the text the generated the error. For application that do not use
Unicode, set ucl i nebuf and uct okenptr to NULL.

See also JS_ReportError, JS_ReportOutOfMemory, JS_SetErrorReporter

JSIdArray

Struct. Internal use only. Describes an array of property I1Ds to associated with
an object.

Syntax struct JSIdArray {
jsint |ength;
jsid vector[1];

b

Description JSI dArray is used internally by the JS engine to hold IDs for enumerated
properties associated with an object.

See also JSProperty

JSProperty

Struct. Internal use only. Describes a single ID value for a JS property.
Syntax struct JSProperty {
jsidid;
b

56 lavaScript C Engine API Reference

Description

See also

Function

Function Definitions

JSProperty is used by the JS engine to hold a unique ID to a property
belonging to an object.

JSIdArray

Definitions

Functions in the JS API define specific JavaScript tasks, such as creating
contexts, properties, objects, or arrays. They also provide methods of
manipulating and examining the JavaScript items you create. The following
section lists the functions defined in the JS API, and notes restrictions on their
uses where applicable.

JS_GetNaNValue

Syntax

Description

See also

Function. Retrieves the numeric representation for not-a-number (NaN) for a
specified JS context.

jsval JS _Get NaNval ue(JSCont ext *cx);

JS_Get NanVal ue retrieves a numeric representation of NaN given a specific JS
context, cx. JS_Get NaNval ue returns a JS value that corresponds to the IEEE
floating point quiet NaN value.

NaN is typically used in JavaScript to represent numbers that fall outside the
valid range for integer or double values. NaN can also be used in error
conditions to represent a numeric value that falls outside a prescribed
programmatic range, such as an input value for a month variable that is not
between 1 and 12.

Comparing NaN to any other numeric value or to itself always results in an
unequal comparison.

JS_GetNegativelnfinityValue, JS_GetPositivelnfinityValue,
JS_GetEmptyStringValue

Chapter 2, JavaScript API Reference 57

Function Definitions

JS_GetNegativelnfinityValue

Function. Retrieves the negative infinity representation for a specified JS
context.

Syntax jsval JS_Get Negativel nfinityVal ue(JSContext *cx);

Description JS_Get Negat i vel nfi ni t yVal ue retrieves a numeric representation of
negative-infinity, given a specific JS context, cx.
JS Get Negat i vel nfini t yVal ue returns a JS value.

Negative infinity is typically used in JavaScript to represent numbers that are
smaller than the minimum valid integer or double value.

As a value in mathematical calculations, negative infinity behaves like infinity.
For example, anything multiplied by infinity is infinity, and anything divided by
infinity is zero.

Seealso JS_GetNaNValue, JS_GetPositivelnfinityValue, JS_GetEmptyStringValue

JS_GetPositivelnfinityValue

Function. Retrieves the numeric representation of infinity for a specified JS
context.

Syntax jsval JS_CetPositivelnfinityVal ue(JSContext *cx);

Description JS_Get Posi ti vel nfi ni tyVal ue retrieves the numeric representation of
infinity, given a specific JS context, cx. JS_Get Posi ti vel nfi ni tyVal ue
returns a JS value.

The infinity representation is typically used in JavaScript to represent numbers
that are larger than the maximum valid integer or double value.

As a value in mathematical calculations infinite values behaves like infinity. For
example, anything multiplied by infinity is infinity, and anything divided by
infinity is zero.

Seealso JS_GetNaNValue, JS_GetNegativelnfinityValue, JS_GetEmptyStringValue

58 lavaScript C Engine API Reference

Function Definitions

JS_GetEmptyStringValue

Function. Retrieves the representation of an empty string for a specified JS
context.

Syntax jsval JS Cet EnptyStringVal ue(JSContext *cx);

Description JS_Get Enpt ySt ri ngVal ue retrieves an empty string for a specified JS context,
cx, and returns it as a JS value.

See also JS_GetNaNValue, JS_GetNegativelnfinityValue, JS_GetPositivelnfinityValue

JS_ConvertArguments

Function. Converts a series of JS values, passed in an argument array, to their
corresponding JS types.

Syntax JSBool JS_Convert Argunent s(JSContext *cx, uintN argc,

jsval *argv, const char *format, ...);
Argument Type Description
cX JSCont ext * Pointer to a JS context from which to derive run time information.
argc uintN The number of arguments to convert.
ar gv jsval * Pointer to the vector of arguments to convert.
f or mat char * Character array containing the recognized format to which to convert
void * A variable number of pointers into which to store the converted types. There

should be one pointer for each converted value.

Description JS_Convert Ar gunent s provides a convenient way to translate a series of JS
values into their corresponding JS types with a single function call. It saves you
from having to write separate tests and elaborate i f. . . el se statements in your
function code to retrieve and translate multiple JS values for use with your own
functions.

cx is the context for the call. ar gc indicates the number of JS values you are
passing in for conversion. ar gv is a pointer to the array of JS values to convert.

Chapter 2, JavaScript API Reference 59

Function Definitions

f or mat is a sequential character array, where each element of the array
indicates the JS type into which to convert the next available JS value. f or mat
can contain one or more instances of the following characters, as appropriate:

Character Corresponding JS type to which to convert the value

b
c

- O »n o

*

JSBool

uint16 (16-bit, unsigned integer)

int32 (32-bit, ECMA-conpliant signed integer)
uint32 (32-bit, ECMA-conpliant, unsigned integer)
int32 (32-bit, signed integer)

j sdoubl e

j sdoubl e (converted to an integer val ue)
JSString (treated as an array of characters)
JSString

JSOhj ect

JSFuncti on

None. If an asterisk (*) is present in format, it tells the conversion
routine to skip converting the current argunent.

None. If a slash (/) is present in format, it tells the conversion
routine to turn off checking that the argunent vector was passed to
JS Convert Argunents froma valid native JS function.

For example, if f or mat is “bl f b”, then JS_Convert Ar gunent s converts the
first JS value in argv into a JSBool , the second value into a j sdoubl e, the third
value into a JShj ect, and the last value into a JSBool .

To skip a given argument, pass an asterisk in the corresponding position in
format.

JS_Convert Argunent s expects to be passed an argument vector that belongs
to a native JS function, such that every argument passed is already a JS value.
By default, when you first call JS_Convert Ar gunent s, it automatically
provides built-in error checking to guarantee that the proper number of
arguments has been passed. If an improper number of arguments is passed in,
JS_Convert Argument s reports an error and terminates. You can turn off this
error-checking at any time by passing a slash (/) as a character any place in
format where you no longer desire the argument number check to be made.

60 lavaScript C Engine API Reference

See also

Function Definitions

When you call JS_Convert Ar gunent s, the arguments you pass in after f or mat
must be a series of pointers to storage. You must allocate one storage pointer
for each converted value you expect.

If JS_Convert Ar gumrent successfully converts all arguments, it returns
JS_TRUE. Otherwise it returns JS_FALSE.

JS_ConvertValue, JS_ValueToObiject, JS_ValueToFunction, JS_ValueToString,
JS_ValueToNumber, JS ValueTolnt32, JS ValueToECMAINt32,
JS_ValueToECMAUINt32, JS ValueToUintl16, JS ValueToBoolean, JS ValueTold

JS_ConvertValue

Function. Converts a JS value to a value of a specific JS type.

Syntax JSBool JS Convert Val ue(JSContext *cx, jsval v, JSType type,
jsval *vp);
Argument Type Description
CX JSCont ext * Pointer to a JS context from which to derive run time information.
v j sval The JS value to convert.
type JSType The type to which to convert the value. type must be one of JSTYPE VA D,
JSTYPE_OBJECT, JSTYPE_FUNCTI ON, JSTYPE_STRI NG JSTYPE_NUVMBER,
or JSTYPE_BOOLEAN. Otherwise JS_Conver t Val ue reports an error.
vp jsval * Pointer to the JS value that contains the converted value when the function
returns.
Description JS_Convert Val ue converts a specified JS value, v, to a specified JS type, t ype.

Conversion occurs within a specified JS context, cx. The converted value is
stored in the j sval pointed to by vp. Typically users of this function set vp to
point to v, so that if conversion is successful, v now contains the converted
value.

JS_Convert Val ue calls other, type-specific conversion routines based on what
you specify in type. These include JS_Val ueToFuncti on, JS Val ueToStri ng,
JS Val ueToNunber, and JS Val ueToBool ean.

Converting any JS value to JSTYPE_VO D always succeeds.

Chapter 2, JavaScript API Reference 61

Function Definitions

Converting to JSTYPE_OBJECT is successful if the JS value to convert is one of
JSVAL _| NT, JSVAL_DOUBLE, JSVAL_STRI NG, JSVAL_BOOLEAN, or
JSVAL_OBJECT.

Converting to JSTYPE_FUNCTI ON is successful if the JS value to convert is an
object for which a function class has been defined, or if the JS value is already
a function.

Converting any JS value to JSTYPE_STRI NG always succeeds.

Converting a JS value to JSTYPE_NUMBER succeeds if the JS value to convert is a
JSVAL_| NT, JSVAL_DQUBLE, or JSVAL_BOOLEAN. If the JS value is a
JSVAL_STRI NG that contains numeric values and signs only, conversion also
succeeds. If the JS value is a JSVAL_OBJECT, conversion is successful if the
object supports its own conversion function.

Converting any JS value to JSTYPE_BOCLEAN always succeeds, except when the
JS value is a JSVAL_OBJECT that does not support its own conversion routine.

If the conversion is successful, JS_Convert Val ue returns JS_TRUE, and vp
points to the converted value. Otherwise, it returns JS_FALSE, and vp is either
undefined, or points to the current value of v, depending on how you
implement your code.

Note Converting a JS value from one type to another does not change the actual data
value stored in the item.

See also JS_ConvertArguments, JS_ValueToObiject, JS_ValueToFunction,

JS_ValueToString, JS_ValueToNumber, JS ValueTolnt32, JS_ValueToBoolean,
JS_TypeOfValue, JS_GetTypeName

JS_ValueToObject

Function. Converts a JS value to a JS object.
Syntax JSBool JS Val ueToObj ect (JSCont ext *cx, jsval v,
JSOhj ect **objp);
Type Description
JSCont ext * Pointer to a JS context from which to derive run time information.
j sval The JS value to convert.
JSOhj ect ** Pointer to the JS object into which to store the converted value.

62 lavaScript C Engine API Reference

Function Definitions

Description JS_Val ueToOhj ect converts a specified JS value, v, to a JS object. Conversion
occurs within a specified JS context, cx. The converted object is stored in the
object pointed to by obj p. If the conversion is successful, JS_Val ueToObj ect
returns JS_TRUE. Otherwise it returns JS_FALSE.

You can successfully convert a JS value to an object if the JS value to convert is
one of JSVAL_| NT, JSVAL_DOUBLE, JSVAL_STRI NG, JSVAL_BOOLEAN, or
JSVAL_OBJECT. Note that if v is already an object, the object returned in obj p
represents a converted version of v, rather than original version of v.

Note Converting a JS value to an object subjects the resulting object to garbage
collection unless you protect against it using a local root, an object property, or
the JS_AddRoot function.

See also JS_ConvertArguments, JS_ConvertValue, JS_ValueToFunction, JS_ValueToString,
JS_ValueToNumber, JS_ValueTolnt32, JS_ValueToBoolean, JS_TypeOfValue,
JS_GetTypeName, JS_AddRoot

JS ValueToFunction

Function. Converts a JS value to a JS function.

Syntax JSFunction * JS Val ueToFuncti on(JSContext *cx, jsval v);
Argument Type Description
cX JSCont ext * Pointer to a JS context from which to derive run time information.
v j sval The JS value to convert.

Description JS_Val ueToFunct i on converts a specified JS value, v, to a JS function. The
actual conversion is performed by the object’s convert operation. Conversion
occurs within a specified JS context, cx. JS_Val ueToFunct i on returns a
pointer to the converted function.

Converting a JS value to a function succeeds if the value is an object for which
a function class has been defined, or if the JS value is already a function. If
conversion fails, JS_Val ueToFunct i on returns NULL.

See also JS_ConvertArguments, JS_ConvertValue, JS_ValueToObiject, JS_ValueToString,
JS_ValueToNumber, JS ValueTolnt32, JS ValueToBoolean, JS_TypeOfValue,
JS_GetTypeName

Chapter 2, JavaScript API Reference 63

Function Definitions

JS_ ValueToString

Function. Converts a JS value to a JS string.

Syntax JSString * JS Val ueToString(JSContext *cx, jsval v);

Argument Type Description
CcX JSCont ext * Pointer to a JS context from which to derive run time information.
v j sval The JS value to convert.

Description JS_Val ueToSt ri ng converts a specified JS value, v, to a JS string. The actual
conversion is performed by the object’s convert operation. Conversion occurs
within a specified JS context, cx. JS_Val ueToSt ri ng always returns a pointer
to a string. The original value is untouched.

Note Converting a JS value to a string subjects the resulting string to garbage
collection unless you protect against it using a local root, an object property, or
the JS_AddRoot function.

See also JS_ConvertArguments, JS_ConvertValue, JS_ValueToObiject,
JS_ValueToFunction, JS_ValueToNumber, JS_ValueTolnt32,
JS_ValueToBoolean, JS_TypeOfValue, JS_GetTypeName, JS_AddRoot

JS ValueToNumber

Function. Converts a JS value to a JS double.

Syntax JSBool JS Val ueToNunber (JSContext *cx, jsval v,
j sdoubl e *dp);

Argument Type Description

cX JSCont ext * Pointer to a JS context from which to derive run time information.

Y j sval The JS value to convert.

dp j sdoubl e * Pointer to the JS value that contains the converted double when the function
returns.

Description JS_Val ueToNunber converts a specified JS value, v, to a JS double. The actual
conversion is performed by the object’s convert operation. Conversion occurs
within a specified JS context, cx. The converted value is stored in the j sdoubl e
pointed to by dp.

64 lavaScript C Engine API Reference

Function Definitions

You can convert a JS value to a number if the JS value to convert is a
JSVAL_| NT, JSVAL_DQUBLE, or JSVAL_BOOLEAN. If the JS value is a
JSVAL_STRI NG that contains numeric values and signs only, conversion also
succeeds. If the JS value is a JSVAL_OBJECT, conversion is successful if the
object supports its own conversion function.

When conversion is successful, JS_Val ueToNunber returns JS TRUE.
Otherwise, it reports an error and returns JS_FALSE.

Note If you know the value to convert will always be an integer, or if you don’t mind
losing the fractional portion of a double value, you can call JS_ValueTolnt32
instead of JS_Val ueToNunber . Converting a JS value to a double subjects the
resulting double to garbage collection unless you protect against it using a local
root, an object property, or the JS_AddRoot function.

See also JS_ConvertArguments, JS_ConvertValue, JS_ValueToObiject,
JS_ValueToFunction, JS_ValueToString, JS_ValueTolnt32, JS_ValueToBoolean,
JS_TypeOfValue, JS_GetTypeName, JS_AddRoot

JS ValueTolnt32

Function. Converts a JS value to a JS 32-bit integer.

Syntax JSBool JS_Val ueTol nt 32(JSCont ext *cx, jsval v, int32 *ip);
Argument Type Description

CX JSCont ext * Pointer to a JS context from which to derive run time information.

v j sval The JS value to convert.

ip int32 * Pointer to the JS value that contains the converted integer when the function
returns.

Description JS_Val ueTol nt 32 converts a specified JS value, v, to a JS double, and then to
a 32-bit integer, if it fits. The fractional portion of the double is dropped silently
during conversion to an integer value. If the double is out of range,

JS_Val ueTol nt 32 reports an error and conversion fails.

The actual conversion is performed by the object’s convert operation.
Conversion occurs within a specified JS context, cx. The converted value is
stored in the i nt 32 pointed to by i p.

Chapter 2, JavaScript API Reference 65

Function Definitions

Note

See also

You can convert a JS value to an integer if the JS value to convert is a
JSVAL_| NT, JSVAL_DQUBLE, or JSVAL_BOOLEAN. If the JS value is a
JSVAL_STRI NG that contains numeric values and signs only, conversion also
succeeds. If the JS value is a JSVAL_OBJECT, conversion is successful if the
object supports its own conversion function.

If the conversion is successful, JS_Val ueTol nt 32 returns JS_TRUE. Otherwise,
it reports an error and returns JS_FALSE.

If the value to convert may sometimes be a floating point value, and you want
a precise conversion, call JS_ValueToNumber instead of JS_Val ueTol nt 32.
Converting a JS value to a double subjects the resulting double to garbage
collection unless you protect against it using a local root, an object property, or
the JS_AddRoot function.

JS_ConvertArguments, JS_ConvertValue, JS_ValueToObiject,
JS_ValueToFunction, JS_ValueToString, JS_ValueToNumber,
JS_ValueToBoolean, JS_TypeOfValue, JS_GetTypeName, JS_AddRoot

JS_ValueToECMAINt32

Syntax

Argument Type

CX
\'

ip

Function. Converts a JS value to an ECMA-compliant 32-bit integer.

JSBool JS_Val ueToECMAI nt 32(JSContext *cx, jsval v, int32 *ip);
Description

JSCont ext * Pointer to a JS context from which to derive run time information.

j sval The JS value to convert.
int32 * Pointer to the JS value that contains the converted integer when the function
returns.
Description JS_Val ueToECMAI nt 32 converts a JS value, v, to a JS double, and then to an

ECMA-standard, 32-bit, signed integer. The fractional portion of the double is
dropped silently during conversion to an integer value. If the double is out of
range, JS_Val ueToEMCAI nt 32 reports an error, and conversion fails. and
returns JS_FALSE. Conversion occurs within a specified JS context, cx.

66 lavaScript C Engine API Reference

Function Definitions

You can convert a JS value to an integer if the JS value to convert is a
JSVAL_| NT, JSVAL_DQUBLE, or JSVAL_BOOLEAN. If the JS value is a
JSVAL_STRI NG that contains numeric values and signs only, conversion also
succeeds. If the JS value is a JSVAL_OBJECT, conversion is successful if the
object supports its own conversion function.

If the conversion is successful, JS_Val ueToECMAI nt 32 returns JS_TRUE.
Otherwise, it reports an error and returns JS_FALSE.

See also JS_ConvertArguments, JS_ValueToObiject, JS_ValueToFunction,
JS_ValueToString, JS_ValueToNumber, JS_ValueTolnt32,
JS_ValueToECMAUINt32, JS_ValueToUintl6, JS ValueToBoolean, JS ValueTold

JS_ValueToECMAUINt32

Function. Converts a JS value to an ECMA-compliant, unisgned 32-bit integer.

Syntax JSBool JS_Val ueToECVAUI nt 32(JSCont ext *cx, jsval v, uint32 *ip);
Argument Type Description

CX JSCont ext * Pointer to a JS context from which to derive run time information.

v j sval The JS value to convert.

ip uint32 * Pointer to the JS value that contains the converted integer when the function
returns.

Description JS_Val ueToECMAUI nt 32 converts a JS value, v, to a JS double, and then to an
ECMA-standard, 32-bit, unsigned integer. The fractional portion of the double is
dropped silently during conversion to an integer value. If the double is out of
range, JS_Val ueToEMCAUI nt 32 reports an error, and conversion fails. and
returns JS_FALSE. Conversion occurs within a specified JS context, cx.

You can convert a JS value to an integer if the JS value to convert is a
JSVAL_| NT, JSVAL_DOUBLE, or JSVAL_BOOLEAN. If the JS value is a
JSVAL_STRI NG that contains numeric values and signs only, conversion also
succeeds. If the JS value is a JSVAL_OBJECT, conversion is successful if the
object supports its own conversion function.

If the conversion is successful, JS_Val ueToECVAI nt 32 returns JS_TRUE, and
i p contains a pointer to the converted value. Otherwise, it reports an error and
returns JS_FALSE.

Chapter 2, JavaScript API Reference 67

Function Definitions

See also JS_ConvertArguments, JS_ValueToObiject, JS_ValueToFunction,
JS_ValueToString, JS_ValueToNumber, JS_ValueTolInt32, JS_ValueToECMAInt32,
JS ValueToUintl16, JS_ ValueToBoolean, JS ValueTold

JS ValueToUintl6

Function. Converts a JS value to an unsigned, 16-bit integer.

Syntax JSBool JS Val ueToUi nt 16(JSCont ext *cx, jsval v, uintl6 *ip);
Argument Type Description

CX JSCont ext * Pointer to a JS context from which to derive run time information.

v j sval The JS value to convert.

ip uint16 * Pointer to the JS value that contains the converted integer when the function
returns.

Description JS_Val ueToUi nt 16 converts a specified JS value, v, to a JS double, and then to
a 16-bit integer, if it fits. The fractional portion of the double is dropped silently
during conversion to an integer value. If the double is out of range,

JS Val ueToUi nt 16 reports an error and conversion fails. Conversion occurs
within a specified JS context, cx. The converted value is stored in the ui nt 16
pointed to by i p.

You can convert a JS value to an integer if the JS value to convert is a
JSVAL_| NT, JSVAL_DOUBLE, or JSVAL_BOOLEAN. If the JS value is a
JSVAL_STRI NG that contains numeric values and signs only, conversion also
succeeds. If the JS value is a JSVAL_OBJECT, conversion is successful if the
object supports its own conversion function.

If the conversion is successful, JS_Val ueTol nt 32 returns JS_TRUE. Otherwise,
it reports an error and returns JS_FALSE.

See also JS_ConvertArguments, JS_ValueToObiject, JS_ValueToFunction,
JS_ValueToString, JS_ValueToNumber, JS_ValueTolInt32, JS_ValueToECMAInt32,
JS_ValueToECMAUINt32, JS_ValueToBoolean, JS ValueTold

JS ValueToBoolean

Function. Converts a JS value to a JS Boolean.

68 lavaScript C Engine API Reference

Function Definitions

Syntax JSBool JS Val ueToBool ean(JSCont ext *cx, jsval v,

JSBool *bp);
Argument Type Description
CX JSCont ext * Pointer to a JS context from which to derive run time information.
v j sval The JS value to convert.
bp JSBool * Pointer to the JS value that contains the converted Boolean when the function
returns.

Description JS_Val ueToBool ean converts a specified JS value, v, to a JS Boolean. The
actual conversion is performed by the object’s convert operation. Converting
any JS value to a Boolean always succeeds, except when the JS value is a
JSVAL_OBJECT that does not support its own conversion routine.

Conversion occurs within a specified JS context, cx. The converted value is
stored in the JSBool pointed to by bp. If the conversion is successful,

JS Val ueToBool ean returns JS_TRUE. If the value to convert is an empty
string, or conversion is unsuccesful, JS Val ueToBool ean returns JS_FALSE.

See also JS_ConvertArguments, JS_ConvertValue, JS_ValueToObiject,
JS_ValueToFunction, JS_ValueToString, JS_ValueToNumber, JS ValueTolnt32,
JS_TypeOfValue, JS_GetTypeName

JS ValueTold

Function. Converts a JS value to a JS ID.

Syntax JSBool JS Val ueTol d(JSContext *cx, jsval v, jsid *idp);
Argument Type Description

CX JSCont ext * Pointer to a JS context from which to derive run time information.
v j sval The JS value to convert.
i dp jsid * Pointer to the JS ID that contains the converted value when the function returns.

Description JS_Val ueTol d converts a specified JS value, v, to a JS ID. If v already contains
a JS_I NT value, i dp is set to point at v. Otherwise, JS_Val ueTol d attempts to
generate an ID value based on the current value of v.

Conversion occurs within a specified JS context, cx. The converted value is
stored in the j si d pointed to by i dp. If the conversion is successful,
JS Val ueTol d returns JS_TRUE. Otherwise, it returns JS_FALSE.

Chapter 2, JavaScript API Reference 69

Function Definitions

See also JS_ConvertArguments, JS_ConvertValue, JS_ValueToObiject,
JS_ValueToFunction, JS_ValueToString, JS_ValueToNumber, JS_ValueTolnt32,
JS_TypeOfValue, JS_GetTypeName, JS_ldToValue

JS IdToValue

Function. Converts a JS ID to a JS value.

Syntax JSBool JS_ | dToVal ue(JSCont ext *cx, jsval v,

JSBool *bp);
Argument Type Description
CX JSCont ext * Pointer to a JS context from which to derive run time information.
id jsid The JS ID to convert.
vp jsval * Pointer to the JS value that contains the converted ID when the function returns.

Description JS_I dToVal ue converts a specified JS ID, i d, to a JS value. Conversion occurs
within a specified JS context, cx. The converted value is stored in the j sval
pointed to by vp. If the conversion is successful, JS_I dToVval ue returns
JS_TRUE. Otherwise, it returns JS_FALSE.

See also JS_ConvertValue, JS_ValueToObiject, JS_ValueToFunction, JS_ValueToString,
JS_ValueToNumber, JS ValueTolnt32, JS ValueTold, JS_TypeOfValue,
JS_GetTypeName

JS_TypeOfValue

Function. Determines the JS data type of a JS value.

Syntax JSType JS _TypeO Val ue(JSCont ext *cx, jsval v);

Argument Type Description
CcX JSCont ext * Pointer to a JS context from which to derive run time information.
v j sval The JS value to examine.

Description JS_TypeOf Val ue examines a specified JS value, v, and returns its JS data type.
Examination occurs within a specified JS context, cx. The return value is always
one of JSTYPE_VQO D, JSTYPE_OBJECT, JSTYPE_FUNCTI ON, JSTYPE_STRI NG,
JSTYPE_NUMBER, or JSTYPE_BOCLEAN.

70 lavaScript C Engine API Reference

Function Definitions

See also JS_ConvertValue, JS_ValueToObject, JS_ValueToFunction, JS_ValueToString,
JS_ValueToNumber, JS_ValueTolInt32, JS_ValueToBoolean, JS_GetTypeName

JS GetTypeName

Macro. Function. Returns a pointer to the string literal description of a specified
JS data type.

Syntax const char * JS_Get TypeNanme(JSCont ext *cx, JSType type);
Argument Type Description
cX JSCont ext * Pointer to a JS context from which to derive run time information.

type JSType The JS value to examine. t ype is one of JSTYPE_VQO D, JSTYPE_OBJECT,
JSTYPE_FUNCTI ON, JSTYPE_STRI NG, JSTYPE_NUMVBER, or
JSTYPE_BOCLEAN.

Description JS_Get TypeNane returns a pointer to a string literal description of a specified
JS data type, t ype. Testing occurs within a specified JS context, cx. The
following table lists JSTypes and the string literals reported by
JS Get TypeNane:

Type Literal
JSTYPE_VO D “undefined”
JSTYPE_OBJECT “object”
JSTYPE_FUNCTION “function”
JSTYPE_STRING “string”
JSTYPE_NUMBER “number”
JSTYPE_BOOLEAN “boolean”
Any other value NULL

See also JS_ConvertValue, JS_ValueToObject, JS_ValueToFunction, JS_ValueToString,
JS_ValueToNumber, JS_ValueTolInt32, JS_ValueToBoolean, JS_TypeOfValue

JS_Init

Function. Deprecated. Initializes the JavaScript run time.

Syntax JSRuntinme * JS Init(uint32 nmaxbytes);

Chapter 2, JavaScript API Reference 71

Function Definitions

Description

JS_Finish

Syntax

Description

See also

JS_Lock

Syntax

Description

See also

JS_Init is a deprecated function that initializes the JavaScript run time
environment. Use JS_NewRunt i me instead of this function.

JS_NewRuntime, JS_DestroyRuntime

Function. Deprecated. Frees the JavaScript run time.
void JS Finish(JSRuntine *rt);

JS_Fi ni sh is a deprecated function that frees the specified the JavaScript run
time environment, rt. Use JS_Dest royRunt i me instead of this function.

JS_DestroyRuntime, JS_NewRuntime

Function. Locks the JS run-time environment.
void JS Lock(JSRuntime *rt);

JS_Lock is an empty, APl hook function for developers so that they provide an
exclusive locking mechanism for the JS run time on a specific platform or for a
specific application. Developers must create their own locking function that
takes a single argument, rt, the JS run-time environment to lock. Locking the
run time protects critical sections in a threaded environment. After performing
one or more exclusive lock operations, the run time should be unlocked with a
call to JS_Unl ock.

JS_Unlock, JS_GetRuntime

JS_Unlock

Syntax

Function. Unlocks a previously locked JS run-time environment.

void JS Unl ock(JSRuntine *rt);

72 lavaScript C Engine API Reference

Description

See also

Function Definitions

JS_Unl ock is an empty, APl hook function for developers so that they can
provide a mechanism for unlocking the JS run-time environment after having
previously locked it with a call to JS_Lock. Developers must create their own
unlocking function that takes a single argument, rt, the JS run-time
environment to unlock. JS_Unl ock must undo the actions taken by the
developer’s implementation of JS_Lock.

JS_Lock, JS_GetRuntime

JS NewContext

Function. Creates a new JavaScript context.

Syntax JSContext * JS NewContext (JSRuntime *rt, size_t stacksize);
Argument Type Description
*rt JSRuntime Pointer to a previously established JS run-time environment with which to

st acksi ze size_t

Description

Note

See also

associate this context.
The size, in bytes, of the execution stack space to allocate for the context.

JS_NewCont ext creates a new JavaScript context for an executing script or
thread. Each script or thread is associated with its own context, and each
context must be associated with a specified JS run time, rt . A context specifies
a stack size for the script, the amount, in bytes, of private memory to allocate to
the execution stack for the script.

Generally you use JS_NewCont ext to generate a context for each separate
script in a HTML page or frame.

Once established, a context can be used any number of times for different
scripts or threads so long as it's only associated with one script or thread at a
time.

If a call to JS_NewCont ext is successful, it returns a pointer to the new context.
Otherwise it returns NULL.

JS_DestroyContext, JS_Contextlterator

Chapter 2, JavaScript API Reference 73

Function Definitions

JS_ DestroyContext

Function. Frees a specified JS context.
Syntax void JS DestroyCont ext (JSCont ext *cX);

Description JS_Dest r oyCont ext frees the stack space allocated to a previously created JS
context, cx.

Seealso JS_NewContext, JS_Contextlterator

JS_GetRuntime

Function. Retrieves a pointer to the JS run time.
Syntax JSRuntime *) JS Get Runti nme(JSContext *cx);

Description JS_Get Runt i e retrieves a pointer to the JS run time with which a specified
script context, cx, is associated. All contexts are associated with a particular JS
run time when they are first created; JS_Get Runt i me provides a convenient,
programmatic way to look up the association.

Seealso JS_Init, JS Lock, JS_Unlock, JS_NewContext, JS_Finish

JS Contextlterator

Function. Cycles through the JS contexts associated with a particular JS run
time.

Syntax JSContext * JS Contextlterator(JSRuntime *rt,
JSCont ext **iterp);
Argument Type Description

rt JSRuntime * Pointer to a previously established JS run-time environment with which script
contexts to iterate through are associated.

iterp JSCont ext ** Pointer to a JS context pointer that holds current context when
JS Contextlterator is called, and that on return holds the next context to
call with a subsequent call to the iterator.

74 JavaScript C Engine API Reference

Description

Example

See also

Function Definitions

JS_Cont ext | terator enables you to cycle through all the executable script
contexts associated with a specified JS run-time environment, rt . Each call to
JS_Cont ext | terator cycles from the current context to the previous context.

The first time you call JS_ContextIterator,iterp can point to a null-valued
context pointer, or it can point to a known context pointer associated with the
specified run time. If you point it er p at a null-valued context pointer, the
function automatically determines the first executable script context for the run
time, and makes it the “current” context for the function. If you setiterp to a
valid context pointer, that context becomes the “current” context. If the
“current” context matches the starting address of the run time environment’s
context list, then there are no context established, and JS_Cont ext | t er at or
returns NULL. Otherwise JS_Cont ext I terat or pointsiter p to the previous
context pointer in the context chain, and returns that pointer.

In effect, by making repeated calls to JS_Cont ext | t er at or you can cycle
through all executable script contexts for a given run time, and perform
common operations on each them.

The following code snippet illustrates how to cycle through the contexts for a
given context:

JSCont ext **cxArray, *acx;

JSContext *iterp = NULL;

int i;

i = 0;

while ((acx = JSContextlterator(rt, & terp)) != NULL)
{

}
JS_NewContext, JS_DestroyContext

printf(*%d “. ++1);

JS_GetVersion

Syntax

Description

Function. Retrieves the JavaScript version number used within a specified
executable script context.

JSVersion JS_Get Versi on(JSCont ext *cx);

JS_Get Ver si on reports an encapsulated JavaScript version humber used
within a specified context, cx. The version number is an enumerated value that
corresponds to the JavaScript version string with which JS users are familiar.

Chapter 2, JavaScript API Reference 75

Function Definitions

Value
100
110
120
130

See also

The following table lists possible values reported by JS_Get Ver si on, the
enumerated value you can use for the JS version in your code, and provides a
translation to the actual JavaScript version string:

Enumeration Meaning

JSVERSION 1 O JavaScript 1.0
JSVERSION 1 1 JavaScript 1.1
JSVERSION 1 2 JavaScript 1.2
JSVERSI ON_1_3 JavaScript 1.3

JSVERSI ON_DEFAULT Default JavaScript version
JSVERSI ON_UNKNOWN Unknown JavaScript version

If JSVERSI ON_DEFAULT is returned by JS_Get Ver si on, it indicates that the
current script does not provide a version number and that the script is executed
using the last known version number. If that version number is unknown
because a script without a specified version is the first to execute,

JS_Get Ver si on still returns JSVERSI ON_DEFAULT.

JS_SetVersion

JS_SetVersion

Syntax

Description

Function. Specifies the version of JavaScript used by a specified executable
script context.

JSVersi on JS_Set Ver si on(JSCont ext *cx, JSVersion version);

JS_Set Ver si on attempts to set the version of JavaScript to ver si on for a
specified executable script context, cx. ver si on must be one of the following
values:

Enumeration Meaning

JSVERSION 1 O JavaScript 1.0
JSVERSION 1 1 JavaScript 1.1
JSVERSION 1 2 JavaScript 1.2
JSVERSION 1_3 JavaScript 1.3

JS_Set Ver si on returns the JS version in effect for the context before you
changed it.

76 lavaScript C Engine API Reference

Function Definitions

Seealso JS_GetVersion

JS_GetlmplementationVersion

Function. Indicates the version number of the JS engine.
Syntax const char * JS_Getl npl ement ati onVer si on;

Description JS_Get | npl ement at i onVer si on returns a hard-coded, English language string
that specifies the version number of the JS engine currently in use, and its
release date.

See also JS_GetVersion, JS_SetVersion

JS_GetGlobalObject

Function. Retrieves a pointer to the global JS object for an executable script
context.

Syntax JSObj ect * JS_Get d obal Obj ect (JSCont ext *cXx);

Description JS_Get d obal Obj ect enables you to retrieve a pointer to the global JS object
for a specified context, cx.

See also JS_SetGlobalObject, OBJECT _TO_JSVAL, JSVAL_TO_OBJECT, JS_NewObiject,
JS_DefineObiject, JS_GetFunctionObject

JS_ SetGlobalObject

Function. Specifies the global object for an executable script context.

Syntax void JS Set d obal Obj ect (JSContext *cx, JSChject *obj);

Argument Type Description

JSCont ext * Pointer to the executable script context for which to set the global object.
JSOhj ect * Pointer to the JS object to set as the global object.

Chapter 2, JavaScript API Reference 77

Function Definitions

Description JS_Set G obal Obj ect sets the global object to obj for a specified executable
script context, cx. Ordinarily you set a context’s global object when you call
JS_InitStandardd asses to set up the general JS function and object classes
for use by scripts.

See also JS_InitStandardClasses, JS_GetGlobalObject, OBJECT _TO_JSVAL,
JSVAL_TO_OBIECT, JS_NewObiject, JS_DefineObiject, JS_GetFunctionObject

JS_InitStandardClasses

Function. Initializes general JS function and object classes, and the built-in
object classes used in most scripts.

Syntax JSBool JS | nit Standardd asses(JSCont ext *cx, JSOoject *obj);
Argument Type Description

CcX JSCont ext * Pointer to the executable script context for which to initialize JS function and
object classes.

obj JSOhj ect * Pointer to a JS object to set as the global object.

Description JS_I nit St andar dd asses initializes general JS function and object classes,
and the built-in object classes used in most scripts. The appropriate
constructors for these objects are created in the scope defined for obj. Always
call JS_I ni t St andar dCl asses before executing scripts that make use of JS
objects, functions, and built-in objects.

As a side effect, JS_I ni t St andar dCl asses uses obj to establish a global
object for the specified executable context, cx, if one is not already established.

JS I nitStandardd asses also initializes the general JS function and object
classes. Initializing the function class enables building of constructors.
Initializing the object classes enables the <obj ect >. <pr ot ot ype> syntax to
work in JavaScript.

Finally, JS_I ni t St andar dCl asses initializes the built-in JS objects (Arr ay,
Bool ean, Dat e, Mat h, Nunber, and St ri ng) used by most scripts.

Seealso JS_InitClass, JS_GetClass

JS_GetScopeChain

78 lavaScript C Engine API Reference

Function Definitions

Function. Retrieves the scope chain for a given executable script context.
Syntax JSObj ect * JS Get ScopeChai n(JSCont ext *cx);

Description JS_Get ScopeChai n retrieves the scope chain for the currently executing (or
“active”) script or function in a given context, cx. The scope chain provides a
way for JavaScript to resolve unqualified property and variable references. The
scope chain can store reference qualifications, so that future lookups are faster.

See also JS_InitStandardClasses

JS_malloc

Function. Allocates a region of memory for use.

Syntax void * JS malloc(JSContext *cx, size_t nbytes);

Argument Type Description
CX JSCont ext * Pointer to a JS context from which to derive run time information.
nbyt es size_t Amount of space, in bytes, to allocate.

Description JS_mal | oc allocates a region of memory nbyt es in size. If the allocation is
successful, JS_mal | oc returns a pointer to the beginning of the region.

If the memory cannot be allocated, JS_nal | oc passes cx to
JS_Report Qut Of Menory to report the error, and returns a null pointer.

As with a standard C call to nal | oc, the region of memory allocated by this call
is uninitialized and should be assumed to contain meaningless information.

Note Currently JS mal | oc is a wrapper on the standard C mal | oc call. Do not make
assumptions based on this underlying reliance. Future versions of JS nal | oc
may be implemented in a different manner.

See also JS_realloc, JS_free, JS_ReportOutOfMemory

JS realloc

Function. Reallocates a region of memory.

Chapter 2, JavaScript API Reference 79

Function Definitions

Syntax void * JS realloc(JSContext *cx, void *p, size_t nbytes);
Argument Type Description
cX JSCont ext * Pointer to a JS context from which to derive run time information.
p void * Pointer to the previously allocated memory
nbyt es size_t Amount of space, in bytes, to reallocate.
Description JS real | oc reallocates a region of memory, while preserving its contents.

Note

Note

See also

JS free

Typically you call JS real | oc because you need to allocate more memory
than orginally allocated with a call to JS_mal | oc, but it can also be called to
decrease the amount of allocated memory, and even to deallocate the memory
region entirely. p is a pointer to the previously allocated memory region, and
nbyt es is the size, in bytes, of the region to allocate.

Currently JS real | oc is a wrapper on the standard C real | oc call. Do not
make assumptions based on this underlying reliance. Future versions of
JS real | oc may be implemented in a different manner.

If p is null, then JS real | oc behaves like JS_malloc. If p is not null, and
nbytes is 0, JS real | oc returns null and the region is deallocated. If nbyt es
is less than the originally allocated size, then some of the current contents of
memory at the end of the existing region are discarded. If nbyt es is greater
than the originally allocated size, the additional space is appended to the end.
As with JS_mal | oc, new space is not initialized and should be regarded to
contain meaningless information.

If a reallocation request fails, JS_r eal | oc passes cx to
JS_Report Qut Of Menor y to report the error.

Whenever the pointer returned by JS_r eal | oc differs from p, assume that the
old region of memory is deallocated and should not be used.

JS_malloc, JS_free, JS_ReportOutOfMemory

Function. Deallocates a region of memory.

80 lavaScript C Engine API Reference

Function Definitions

Syntax void JS free(JSContext *cx, void *p);

Argument Type Description
cX JSCont ext * Pointer to a JS context from which to derive run time information.
p void * Pointer to the previously allocated memory

Description JS_f r ee deallocates a region of memory allocated by previous calls to
JS_malloc and JS_realloc. If p is null, JS_free does nothing. Once memory is
freed, it should not be used by your application.

Note Currently JS free is a wrapper on the standard C fr ee call. Do not make
assumptions based on this underlying reliance. Future versions of JS_fr ee may
be implemented in a different manner.

See also JS_malloc, JS_realloc

JS_strdup

Function. Duplicates a specified string within a specific JS executable script
context.

Syntax char * JS strdup(JSContext *cx, const char *s);

Argument Type Description
CX JSCont ext * Pointer to a JS context from which to derive run time information.
S char * Pointer to an existing string to duplicate.

Description JS_st rdup duplicates a specified string, s, within a specified context, cx. To
duplicate the string, JS_st r dup allocates space from the mal | oc heap for the a
copy of the string, and then copies s to the newly allocated location. If the
allocation fails, JS_st r dup returns a null pointer. Otherwise, it returns a
pointer to the duplicate string.

Seealso JS_NewDouble

JS_ NewDouble

Function. Creates a new double value.

Chapter 2, JavaScript API Reference 81

Function Definitions

Syntax j sdoubl e * JS_NewbDoubl e(JSCont ext *cx, jsdouble d);

Argument Type Description
CcX JSCont ext * Pointer to a JS context from which to derive run time information.
d j sdoubl e An existing double value to duplicate.

Description JS_NewDoubl e creates a copy of a JS double, d, for a given executable script
context, cx. Space for the new value is allocated from the JS garbage collection
heap.

If the duplication is successful, JS_NewDoubl e returns a pointer to the copy of
the double. Otherwise it returns NULL.

Note After you create it, a JS double is subject to garbage collection until you protect
against it using a local root, an object property, or the JS_AddRoot function.

See also JS_strdup, JS_NewDoubleValue, JS_NewNumberValue, JS_AddRoot

JS_NewDoubleValue

Function. Creates a JS value based on a JS double.

Syntax JSBool JS_NewDoubl eVal ue(JSCont ext *cx, jsdouble d,
jsval *rval);

Argument Type Description

CX JSCont ext * Pointer to a JS context from which to derive run time information.

d j sdoubl e An existing double to assign as a value to the j sval .

rval jsval * Pointer to a previously declared j sval into which to store the double value.

Description JS_NewDoubl eVal ue creates a j sval containing a double value that
corresponds to the double passed in as an argument. cx is the executable script
context in which this call is made. d is the double value to assign to the j sval ,
and rval is the j sval into which the new JS double value is stored. Space for
the new value is allocated from the JS garbage collection heap.

JS_NewDoubl eVal ue attempts to creates a temporary copy of the double value.
If the copy is successful, then the jsval is created, and the function returns
JS_TRUE.Otherwise it returns JS_FALSE.

Note After you create it, a JS double is subject to garbage collection until you protect
against it using a local root, an object property, or the JS_AddRoot function.

82 lavaScript C Engine API Reference

See also

Function Definitions

JS_NewNumberValue, JS_AddRoot

JS_NewNumberValue

Syntax

Argument Type

Function. Internal use only. Summary fragment.

JSBool JS_NewNunber Val ue(JSCont ext *cx, jsdouble d,
jsval *rval);

Description

cX JSCont ext * Pointer to a JS context from which to derive run time information.

d j sdoubl e An existing double to assign as a value to the j sval .

rval j sval

Description

Note

See also

* Pointer to a previously declared j sval into which to store the double value.

JS_NewNunber Val ue creates a j sval containing a numeric value that
corresponds to the double passed in as an argument. cx is the executable script
context in which this call is made. d is the numeric value to assign to the

j sval, and rval is the j sval into which the new JS numeric value is stored.
Space for the new value is allocated from the JS garbage collection heap.

JS_NewNunber Val ue attempts to creates a temporary copy of the double value.
First it copies the value into an integer variable and compares the double and

integer values. If they match, then JS_NewNunber converts the integer to a JS

value. If they do not match, JS_NewNunber calls JS_NewDoubl e to create a JS
value containing the value of the original double. If the creation of the JS value
is successful, the function returns JS_TRUE. Otherwise it returns JS_FALSE.

If JS_NewNunber Val ue creates a double, be aware that it is subject to garbage
collection unless you protect against it using a local root, an object property, or
the JS_AddRoot function.

JS_NewDoubleValue, JS_AddRoot

JS_AddRoot

Function. Adds a garbage collection hash table entry for a specified JS item to
protect it from garbage collection.

Chapter 2, JavaScript API Reference 83

Function Definitions

Syntax JSBool JS_AddRoot (JSContext *cx, void *rp);

Argument Type Description
CcX JSCont ext * Pointer to a JS context from which to derive run time information.
rp void * Pointer to the item to protect.

Description JS_AddRoot protects a specified item, r p, from garbage collection. rp is a
pointer to the data for a JS double, string, or object. An entry for the item is
entered in the garbage collection hash table for the specified executable script
context, cx.

If the root item is an object, then its associated properties are automatically
protected from garbage collection, too.

Note You should only use JS_AddRoot to root JS objects, JS strings, or JS doubles,
and then only if they are derived from calls to their respective JS_NewXXX
creation functions.

If the entry in the hash table is successfully created, JS_AddRoot returns
JS_TRUE. Otherwise it reports a memory error and returns JS_FALSE.

See also JS_AddNamedRoot, JS_ DumpNamedRoots, JS_RemoveRoot

JS_AddNamedRoot

Function. Adds a garbage collection hash table entry for a named JS item to
protect it from garbage collection.

Syntax JSBool JS AddNanedRoot (JSContext *cx, void *rp,
const char *nane);

Argument Type Description

cX JSCont ext * Pointer to a JS context from which to derive run time information.
rp void * Pointer to the item to protect.

name char * Name of the item to protect

Description JS_AddNanedRoot protects a specified item, r p, from garbage collection. r p is
a pointer to the data for a JS double, string, or object. nane is the name to
assign to this protected item. An entry for the item is entered in the garbage
collection hash table for the specified executable script context, cx.

84 JavaScript C Engine API Reference

Function Definitions

If the root item is an object, then its associated properties are automatically
protected from garbage collection, too.

Note You should only use JS_AddNanedRoot to root JS objects, JS strings, or JS
doubles, and then only if they are derived from calls to their respective
JS_NewXXX creation functions.

If the entry in the hash table is successfully created, JS_AddNanedRoot returns
JS_TRUE. Otherwise it reports a memory error and returns JS_FALSE.

See also JS_AddRoot, JS_ DumpNamedRoots, JS_RemoveRoot

JS_DumpNamedRoots

Argument
rt

dunp
dat a

Function. Enumerates the named roots in the garbage collection hash table.

Syntax voi d JS DunpNanmedRoot s(JSRuntine *rt,

voi d (*dunp) (const char *nane, void *rp, void *data),
voi d *data);

Type Description

JSRunti me * Pointer to a JS run time from which to dump named roots
void * Pointer to function that actually dumps the named roots
void * Pointer to a storage area into which to put a root’s data.

Description JS_DunpNanedRoot s retrieves information from the garbage collection hash

Argument
nane

rp

dat a

table about the named roots associated with a specific JS run time, rt.

dunp is the name of the function that actually retrieves the information from the
hash table. If you pass a null pointer for this argument, the JS engine defaults to
using an internal retrieval function. If you write your own dunp function to
replace the internal engine function, note that the function you write must
accept the following arguments, in order:

Type Description

const char *Name of the current hash entry.

void * Pointer to the named roots

void * Pointer to a storage area into which to put a root’s data.

Chapter 2, JavaScript API Reference 85

Function Definitions

dat a is a pointer to the storage structure into which to return retrieved
information. If you pass a null pointer for this argument the JS engine defaults
to using an internal storage structure for this information. If you write your own
dunp function, data must be the same as the last argument passed to the dunp
function.

See also JS_AddRoot, JS_AddNamedRoot, JS RemoveRoot

JS RemoveRoot

Function. Removes a garbage collection hash table entry for a specified JS item
to enable it to be garbage collected.

Syntax JSBool JS RenpbveRoot (JSContext *cx, void *rp);

Argument Type Description
CX JSCont ext * Pointer to a JS context from which to derive run time information.
rp void * Pointer to the item to remove from the hash table.

Description JS_RenpveRoot removes an entry for a a specified item, r p, from the garbage
collection hash table. When an item is removed from the hash table, it can be
garbage collected. r p is a pointer to a JS double, string, or object. An entry for
the item is removed in the garbage collection hash table for the specified
executable script context, cx.

JS_RenoveRoot always returns JS_TRUE.

See also JS_AddRoot, JS_AddNamedRoot, JS_DumpNamedRoots

JS_BeginRequest

Function. Indicates to the JS engine that the application is starting a thread.
Syntax voi d JSBegi nRequest (JSCont ext cx*);

Description When your application start a new thread, JS_Begi nRequest safely increments
the thread counter for the JS engine run time associated with a given context,
cx. In order to increment the counter, this function first checks that garbage
collection is not in process. If it is, JS_Begi nRequest waits until garbage

86 lavaScript C Engine API Reference

Note

See also

Function Definitions

collection is complete before locking the JS engine run time and incrementing
the thread counter. After incrementing the counter, JS_Begi nRequest unlocks
the run time if it previously locked it.

JS_Begi nRequest is only available if you compile the JS engine with
JS_THREADSAFE defined. In a default engine compilation, JS THREADSAFE is
undefined.

JS_EndRequest, JS_SuspendRequest, JS_ResumeRequest

JS_EndRequest

Syntax

Description

Note

See also

Function. Indicates to the JS engine that the application no longer requires a
thread.

voi d JS EndRequest (JSCont ext *cx);

When your application no longer requires a thread, JS_EndRequest safely
decrements the thread counter for the JS engine run time associated with a
given context, cx. If decrementing the counter reduces it to zero,
JS_EndRequest locks the run time and naotifies the garbage collector so that
values no longer in use can be cleaned up. To avoid garbage collection
notification, call JS_SuspendRequest instead of JS_EndRequest .

JS_EndRequest is only available if you compile the JS engine with
JS_THREADSAFE defined. In a default engine compilation, JS THREADSAFE is
undefined.

JS_BeginRequest, JS_SuspendRequest, JS_ResumeRequest

JS_SuspendRequest

Syntax

Description

Function. Indicates to the JS engine that the application is temporarily
suspending a thread.

voi d JS_SuspendRequest (JSCont ext *cX);

When your application suspends use of a thread, JS_SuspendRequest safely
decrements the thread counter for the JS engine run time associated with a
given context, cx.

Chapter 2, JavaScript API Reference 87

Function Definitions

Note JS_SuspendRequest is only available if you compile the JS engine with
JS_THREADSAFE defined. In a default engine compilation, JS_THREADSAFE is
undefined.

See also JS_BeginRequest, JS_EndRequest, JS_ResumeRequest

JS ResumeRequest

Function. Restarts a previously suspended thread.
Syntax voi d JSBResuneRequest (JSCont ext c¢x*);

Description When your application restart a previously suspended thread,
JS_Begi nRequest safely increments the thread counter for the JS engine run
time associated with a given context, cx. In order to increment the counter, this
function first checks that garbage collection is not in process. If it is,
JS_ResunmeRequest waits until garbage collection is complete before locking
the JS engine run time and incrementing the thread counter. After incrementing
the counter, JS_ResuneRequest unlocks the run time if it previously locked it.

Note JS_ResunmeRequest is only available if you compile the JS engine with
JS_THREADSAFE defined. In a default engine compilation, JS_THREADSAFE is
undefined.

See also JS_BeginRequest, JS_EndRequest, JS_SuspendRequest

JS_LockGCThing

Deprecated function. Protects a specified JS item from garbage collection.

Syntax JSBool JS LockGCThi ng(JSContext *cx, void *thing);

Argument Type Description

JSCont ext * Pointer to a JS context from which to derive run time information.
void * Pointer to the item to protect.

88 lavaScript C Engine API Reference

Function Definitions

Description JS_LockGCThi ng is a deprecated function that protects a specified item, t hi ng,
associated with an executable script context, cx, from garbage collection.
t hi ng is a JS double, string, or object. This function is available only for
backward compatibility with existing applications. Use JS_AddRoot instead of
this function.

See also JS_UnlockGCThing, JS_AddRoot

JS_UnlockGCThing

Deprecated function. Reenables garbage collection of a specified JS item.

Syntax JSBool JS_UnockGCThi ng(JSContext *cx, void *thing);

Argument Type Description
CX JSCont ext * Pointer to a JS context from which to derive run time information.
t hi ng void * Pointer to the item to unlock.

Description JS_LockGCThi ng removes a lock from a specified item, t hi ng, enabling it to
be garbage collected. Unlocking occurs within a specified executable script
context, cx. t hi ng is a JS double, string, or object.This function is available
only for backward compatibility with existing applications. Use
JS _RenpveRoot instead.

See also JS_LockGCThing, JS_RemoveRoot

JS_ GC

Function. Performs garbage collection in the JS memory pool.
Syntax void JS GC(JSCont ext *cx);

Description JS_GC performs garbage collection, if necessary, of JS objects, doubles, and
strings that are no longer needed by a script executing in a specified context,
cx. Garbage collection frees space in the memory pool so that it can be reused
by the JS engine.

When you use JS mal | oc and JS real | oc to allocate memory for executable
script contexts, these routines automatically invoke the garbage collection
routine.

Chapter 2, JavaScript API Reference 89

Function Definitions

See also

When your scripts create many objects, you may want to call JS_GC directly in
your code, particularly when request ends or a script terminates. To run
garbage collection only when a certain amount of memory has been allocated,
you can call JS_MaybeGC instead of JS_GC.

JS_malloc, JS_realloc, JS_MaybeGC

JS MaybeGC

Syntax

Description

See also

Function. Invokes conditional garbage collection on the JS memory pool.
voi d JS MaybeGC(JSCont ext *cXx);

JS_MaybeGC performs a conditional garbage collection of JS objects, doubles,
and strings that are no longer needed by a script executing in a specified
context, cx. This function checks that about 75% of available space has already
been allocated to objects before peforming garbage collection. To force
garbage collection regardless of the amount of allocated space, call JS_GC
instead of JS_MaybeGC.

JS_malloc, JS_realloc, JS_GC

JS SetGCCallback

Syntax

Description

See also

Function. Specifies a new callback function for the garbage collector.
JSGCCal | back JS_Set GCCal | back(JSCont ext *cx, JSGCCal | back cb);

JS_Set GCCal | back enables you to specify the function is called by the
garbage collector to return control to the calling program when garbage
collection is complete. cx is the context in which you specify the callback. cb is
a pointer to the new callback function to use.

JS_Set GCCal | back returns a pointer to the previously used callback function
upon completion. Your application should store this return value in order to
restore the original callback when the new callback is no longer needed.

To restore the original callback, simply call JS_Set GCCal | back a second time,
and pass the old callback in as the cb argument.

JS_SetBranchCallback

90 lavaScript C Engine API Reference

Function Definitions

JS_DestroyldArray

Function. Frees a JS ID array structure.
Syntax void JS DestroyldArray(JSContext *cx, JSIdArray *ida);

Description JS_Dest r oyl dArray frees the JS ID array structure pointed to by i da. cx is the
context in which the freeing of the array takes place.

See also JS_NewldArray, JSIdArray

JS_NewldArray

Function. Creates a new JS ID array structure.
Syntax JSIdArray JS_New dArray(JSCont ext *cx);

Description JS_Newl dArr ay allocates memory for a new JS ID array structure. On success,
it returns a pointer to the newly allocated structure. Otherwise it returns NULL.

See also JS_DestroyldArray, JSIdArray

JS_PropertyStub

Function. Provides a dummy property argument for API routines that requires
property information.

Syntax JSBool JS PropertyStub(JSContext *cx, JSOhject *obj, jsval id,

jsval *vp);
Argument Type Description
cX JSCont ext * Pointer to a JS context from which to derive run time information.
obj JSOhj ect * Pointer to the object for this stub.
id j sval The ID for the stub.
vp jsval * Pointer to a jsval for the stub.

Chapter 2, JavaScript API Reference 91

Function Definitions

Description JS_Propert ySt ub provides a convenient way to pass a property to an API
function that requires one without requiring you to create an actual property
definition. This is especially useful for internal operations, such as class
definitions. A property stub is a place holder for an actual property assignment
function.

As designed, JS_Propert ySt ub does not use the arguments you pass to it, and
simply returns JS_TRUE.

See also JS_EnumerateStub, JS_ResolveStub, JS_ConvertStub, JS_FinalizeStub

JS_EnumerateStub

Function. Provides a dummy enumeration object for API routines that requires
it.

Syntax JSBool JS Enunerat eSt ub(JSContext *cx, JSChject *obj);
Argument Type Description
cX JSCont ext * Pointer to a JS context from which to derive run time information.
obj JSOhj ect * Pointer to the object for this stub.

Description JS_Enuner at eSt ub provides a convenient way to pass an enumeration object
to an API function that requires one without requiring you to create an actual
enumeration object. This is especially useful for internal operations, such as
class definitions. An enumeration stub is a placeholder for an actual
enumeration function.

As designed, JS_Enuner at i onSt ub does not use the arguments you pass to it,
and simply returns JS_TRUE.

See also JS_PropertyStub, JS_ResolveStub, JS_ConvertStub, JS_FinalizeStub

JS_ResolveStub

Function. Provides a dummy resolution object for API routines that requires it.

92 lavaScript C Engine API Reference

Function Definitions

Syntax JSBool JS Resol veSt ub(JSCont ext *cx, JSObject *obj, jsval id);
Argument Type Description

CcX JSCont ext * Pointer to a JS context from which to derive run time information.
obj JSOhj ect * Pointer to the object for this stub.
id j sval The ID for the stub.

Description JS_Resol veSt ub provides a convenient way to pass a resolution object to an
API function that requires one without requiring you to create an actual
resolution object. This is especially useful for internal operations, such as class
definitions. A resolution stub is a placeholder for an actual resolution
assignment function.

As designed, JS_Resol veSt ub does not use the arguments you pass to it, and
simply returns JS_TRUE.

See also JS_PropertyStub, JS_EnumerateStub, JS_ConvertStub, JS_FinalizeStub

JS ConvertStub

Function. Provides a dummy conversion object for API routines that requires it.

Syntax JSBool JS _Convert Stub(JSContext *cx, JSObject *obj, JSType type,

jsval *vp);
Argument Type Description
CX JSCont ext * Pointer to a JS context from which to derive run time information.
obj JSObj ect * Pointer to the object for this stub.
type JSType The type to which to convert this object.
vp jsval * Pointer to the JS value in which to store the conversion.

Description JS_Convert St ub provides a convenient way to pass a conversion object to an
API function that requires one without requiring you to create an actual
conversion object. This is especially useful for internal operations, such as class
definitions. A conversion stub is a placeholder for an actual conversion
function.

As designed, JS_Convert St ub does not use the arguments you pass to it, and
simply returns JS_TRUE.

See also JS_PropertyStub, JS_EnumerateStub, JS_ResolveStub, JS_FinalizeStub

Chapter 2, JavaScript API Reference 93

Function Definitions

JS FinalizeStub

Function. Provides a dummy finalization object for API routines that requires it.

Syntax void JS FinalizeStub(JSContext *cx, JSObject *obj);

Argument Type Description
CcX JSCont ext * Pointer to a JS context from which to derive run time information.
obj JSOhj ect * Pointer to the object for this stub.

Description JS_Fi nal i zeSt ub provides a convenient way to pass a finalization object to an
API function that requires one without requiring you to create an actual
finalization object. This is especially useful for internal operations, such as class
definitions. A conversion stub is a placeholder for an actual finalization
function.

As designed, JS_Fi nal i zeSt ub does not use the arguments you pass to it, and
simply returns JS_TRUE.

See also JS_PropertyStub, JS_EnumerateStub, JS_ResolveStub, JS_ConvertStub

JS_InitClass

Function. Initializes a class structure, its prototype, properties, and functions.

Syntax JSOhject * JS Initd ass(JSContext *cx, JSCbject *obj,
JSObj ect *parent _proto, JSC ass *cl asp,
JSNati ve constructor, uintN nargs, JSPropertySpec *ps,
JSFuncti onSpec *fs, JSPropertySpec *static_ps,
JSFuncti onSpec *static_fs);

Argument Type Description

CX JSCont ext * Pointer to a JS context from which to derive run time information.
obj JShj ect * Pointer to the object to use for initializing the class.

parent _proto JSOhj ect * Pointer to a prototype object for the class.

cl asp JSCl ass * Pointer to the class structure to initialize. This structure defines the

class for use by other API functions.

constructor JSNat i ve The constructor for the class. Its scope matches that of the obj
argument. If constructor is NULL, then st ati ¢c_ps and
static_fs arealso NULL.

94 JavaScript C Engine API Reference

nar gs
ps

fs
static_ps

static_fs

Description

Function Definitions

uintN Number of arguments for the constructor.

JSPr opertySpec * Pointer to the properties structure for the prototype object,
parent _proto.

JSFuncti onSpec * Pointer to the functions structure for the prototype object,
parent _proto.

JSPr oper t ySpec * Pointer to the properties structure for the constructor object, if it is
not NULL.

JSFuncti onSpec * Pointer to the functions structure for the constructor object, if it is
not NULL.

JS I nitd ass builds a class structure, its object constructor, its prototype, its
properties, and its methods. A class is an internal JS structure that is not
exposed outside the JS engine. You can use a class, its properties, methods,
and prototypes to build other objects that are exposed outside the engine.

JS_I ni t d ass returns a pointer to a JS object that represents the newly created
class. If JS_I ni t A ass fails, then the pointer returned is NULL.

A class is comprised of a class structure, a constructor, a prototype object, and
properties and functions. The class structure specifies the name of the class, its
flags, and its property functions. These include functions for adding and
deleting properties, getting and setting property values, and enumerating
converting, resolving, and finalizing its properties.

The constructor for the class is built in the same context as cx, and in the same
scope as obj . If you pass NULL to JS_I ni t O ass, then a constructor is not
built, and you cannot specify static properties and functions for the class.

If you provide a constructor for the class, then you should also pass an object
to parent _proto. JS I nitd ass uses parent _proto to build a prototype
accessor object for the class. The accessor object is modeled on the prototype
object you provide. If the accessor object is successfully created,

JS I nitd ass returns a pointer to the JS object. Otherwise it returns NULL,
indicating failure to create the accessor object, and therefore failure to create
the class itself.

After building the constructor and prototype, JS | ni t C ass adds the
properties and methods of the constructor and prototype, if any, to the class
definition. Properties and methods are either “dynamic,” based on the
properties and methods of the prototype object, or “static,” based on the
properties and methods of the constructor.

Chapter 2, JavaScript API Reference 95

Function Definitions

See also JS_GetClass, JS_InstanceOf, JSClass, JSPropertySpec, JSFunctionSpec

JS GetClass

Function. Retrieves the class associated with an object.
Syntax JSClass * JS _Getd ass(JSOhj ect *obj);

Alternative syntax when JS_THREADSAFE is defined in a multithreaded
environment:

JSClass * JS _Getd ass(JSCont ext *cx, JSObj ect *obj)

Description JS_Get d ass returns a pointer to the class associated with a specified JS object,
obj . The class is an internal JS data structure that you can create for objects as
needed. Generally you do not expose a class in your applications, but use it
behind the scenes.

If your application runs in a multithreaded environment, define
JS_THREADSAFE, and pass a thread context as the first argument to
JS CGet d ass.

If an object has a class, JS_Get O ass returns a pointer to the class structure.
Otherwise, it returns NULL.

Seealso JS_InitClass, JS_InstanceOf, JSClass

JS InstanceOf

Function. Determines if an object is an instance of a specified JS class.

Syntax JSBool JS_ | nstanceO (JSContext *cx, JSObject *obj,
JSCl ass *cl asp, jsval *argv);

Argument Type Description

CX JSCont ext * Pointer to a JS context from which to derive run time information.

obj JSOhj ect * Object to test.

cl asp JSCl ass * Class against which to test the object.

ar gv jsval * Optional argument vector. If you do not want to pass an argument vector, pass

NULL for this argument.

96 lavaScript C Engine API Reference

Function Definitions

Description JS_I nst anceOf determines if a specified JS object, obj , has a JS class struct,
cl asp. If the object’s internal class pointer corresponds to cl asp, this function
returns JS_TRUE, indicating that the object is an instance of the class.
Otherwise, JS_| nst anceOf returns JS_FALSE.

If you pass a non-null argument vector, ar gv, to JS_| nst anceOf, and obj is
not an instance of cl asp, this function may report a function mismatch before
returning. To do so, JS | nstanceX tests whether or not there is a function
name associated with the argument vector, and if there is, reports the name in
an error message using the JS_Report Error function.

Seealso JS_InitClass, JS_GetClass, JSClass

JS_GetPrivate

Function. Retrieves the private data associated with an object.

Syntax void * JS GetPrivate(JSContext *cx, JSObject *obj);

Argument Type Description
CcX JSCont ext * Pointer to a JS context from which to derive run time information.
obj JSOhj ect * Obiject for which to retrieve private data.

Description JS_Get Pri vat e retrieves the private data associated with a specified object,
obj . To retrieve private data, an object must be an instance of a class, and that
class must include the JSCLASS HAS PRI VATE flag.

If successful, JS_Get Pri vat e returns a pointer to the private data. Otherwise it
returns NULL which can mean either that there is no private data currently
associated with the object, or that the object cannot have private data.

See also JSVAL_TO_PRIVATE, JSCLASS_HAS_PRIVATE, JS_InitClass, JS_SetPrivate,
JS_GetlnstancePrivate, JSClass

JS SetPrivate

Function. Sets the private data for a JS object.

Chapter 2, JavaScript API Reference 97

Function Definitions

Syntax JSBool JS_Set Privat e(JSContext *cx, JSObject *obj, void *data);
Argument Type Description

CcX JSCont ext * Pointer to a JS context from which to derive run time information.
obj JSOhj ect * Object for which to set private data.
dat a void * Private data for the object.

Description JS_Set Pri vat e sets the private data pointer for a specified object, obj . To set
private data for an object, the object must be an instance of a class, and the
class must include JSCLASS HAS PRI VATE in its flag set.

Only a pointer to data is stored with the object. The data pointer is converted to
a jsval for storage purposes. You must free this pointer in your finalization code
if you allocated storage for it. It is up to your application to maintain the actual
data.

If successful, JS_Set Pri vat e returns JS_TRUE. Otherwise it returns JS_FALSE.

Seealso PRIVATE_TO JSVAL, JSCLASS HAS PRIVATE, JS_InitClass, JS_GetPrivate,
JS_GetlnstancePrivate, JSClass

JS_GetContextPrivate

Function. Retrieves the private data associated with a context.

Syntax void * JS Get Cont ext Private(JSContext *cx);
Argument Type Description

CcX JSCont ext * Pointer to a JS context for which to retrieve data.

Description JS_Get Cont ext Pri vat e retrieves the private data associated with a specified
context, cx. If successful, JS_Get Cont ext Pri vat e returns a pointer to the
private data. Otherwise it returns NULL which means that there is no private
data currently associated with the context.

See also JS_SetContextPrivate

JS_SetContextPrivate

Function. Sets the private data for a context.

98 lavaScript C Engine API Reference

Function Definitions

Syntax JSBool JS_Set Cont ext Privat e(JSContext *cx, void *pdata);
Argument Type Description
CX JSCont ext * Pointer to a JS context for which to set private data.
pdat a void * Pointer to the private data for the context.
Description JS_Set Cont ext Pri vat e sets the private data pointer for a specified context,

See also

CX.

Only a pointer to data is stored with the context. The data pointer is converted
to a jsval for storage purposes. You must free this pointer in your finalization
code if you allocated storage for it. It is up to your application to maintain the
actual data.

JS_GetContextPrivate

JS_GetlnstancePrivate

Function. Retrieves the private data associated with an object if that object is an
instance of a class.

Syntax void * JS GetlnstancePrivate(JSContext *cx, JSObject *obj,
JSCl ass *cl asp, jsval *argv);
Argument Type Description
cX JSCont ext * Pointer to a JS context from which to derive run time information.
obj JSOhj ect * Object for which to retrieve private data.
cl asp JSCl ass * Class against which to test the object.
ar gv jsval * Optional argument vector. If you do not want to pass an argument vector, pass
NULL for this argument.
Description JS_Get | nst ancePri vat e determines if a specified JS object, obj , is an

instance of a JS class, cl asp, and if it is, returns a pointer to the object’s private
data. If the object’s internal class pointer corresponds to cl asp, and you do not
also pass an optional argument vector, ar gv, this function attempts to retrieve a
pointer to the private data. Otherwise, it returns NULL.

Chapter 2, JavaScript API Reference 99

Function Definitions

If you pass a non-null argument vector, ar gv, to JS_Get | nst ancePri vat e,

and obj is not an instance of cl asp, this function reports a function mismatch
before returning NULL. In this case, JS_Get | nst ancePr i vat e tests whether or
not there is a function name associated with the argument vector, and if there
is, reports the name in an error message using the JS_Report Error function.

Note If obj is an instance of cl asp, but there is no private data currently associated
with the object, or the object cannot have private data,
JS Get I nstancePri vat e also returns NULL.

Seealso JSVAL TO_PRIVATE, JSCLASS HAS PRIVATE, JS_InitClass, JS_InstanceOf,
JS_GetPrivate, JS_SetPrivate, JSClass

JS GetPrototype

Function. Retrieves an object’s prototype.

Syntax JSOhj ect * JS Get Prototype(JSContext *cx, JSOhject *obj);

Argument Type Description
CcX JSCont ext * Pointer to a JS context from which to derive run time information.
obj JSOhj ect * Object for which to retrieve the prototype.

Description JS_Get Pr ot ot ype retrieves the prototype object for a specified object, obj . A
prototype object provides properties shared by similar JS objects.

If an object has a prototype, JS_Get Pr ot ot ype returns a pointer to the
prototype. If the object does not have a prototype, or the object finalize
function is active, JS_Get Pr ot ot ype returns NULL.

See also JS_SetPrototype

JS_SetPrototype

Function. Sets the prototype for an object.

Syntax JSBool JS_Set Prot ot ype(JSCont ext *cx, JSCbject *obj,

100 JavaScript C Engine API Reference

Function Definitions

JSObj ect *proto);

Argument Type Description

cX JSCont ext * Pointer to a JS context from which to derive run time information.
obj JSOhj ect * Pointer to the object for which to set the prototype.

proto JSObj ect * Pointer to the prototype to use.

Description JS_Set Pr ot ot ype enables you to set the prototype object for a specified
object. A prototype object provides properties that are shared by similar JS
object instances. Ordinarily you set a prototype for an object when you create
the object with JS_NewObj ect, but if you do not set a prototype at that time,
you can later call JS_Set Pr ot ot ype to do so.

obj is a pointer to an existing JS object, and pr ot o is a pointer to second
existing object upon which the first object is based.

Note Take care not to create a circularly-linked list of prototypes using this function,
because such a set of prototypes cannot be resolved by the JS engine.

If JS_Set Pr ot ot ype is successful, it returns JS_TRUE. Otherwise, if it cannot
create and fill a prototype slot for the object, it returns JS_FALSE.

See also JS_GetPrototype, JS_NewObject

JS GetParent

Function. Retrieves the parent object for a specified object.

Syntax JSObj ect * JS_Get Parent (JSCont ext *cx, JSCbject *obj);
Argument Type Description
cX JSCont ext * Pointer to a JS context from which to derive run time information.
obj JSOhj ect * Object for which to retrieve the parent.

Description JS_Get Par ent retrieves the parent object for a specified object, obj . If an
object has a parent, JS_Get Par ent returns a pointer to the parent object. If the
object does not have a parent, or the object finalize function is active,

JS_Get Par ent returns NULL.

See also JS_SetParent, JS_GetConstructor

Chapter 2, JavaScript API Reference 101

Function Definitions

JS SetParent

Function. Sets the parent for an object.

Syntax JSBool JS_Set Parent (JSCont ext *cx, JSCbject *obj,
JSChj ect *parent);

Argument Type Description

CX JSCont ext * Pointer to a JS context from which to derive run time information.
obj JSCbj ect * Pointer to the object for which to set the parent.

par ent JSOhj ect * Pointer to the parent object to use.

Description JS_Set Par ent enables you to set the parent object for a specified object. A
parent object is part of the enclosing scope chain for an object. Ordinarily you
set a parent for an object when you create the object with JS_Newbj ect, but
if you do not set a parent at that time, you can later call JS_Set Par ent to do
s0.

obj is a pointer to an existing JS object, and par ent is a pointer to a second
existing object of which the first object is a child. If JS_Set Par ent is
successful, it returns JS_TRUE. Otherwise, if it cannot create and fill a parent
slot for the object, it returns JS_FALSE.

See also JS_GetParent, JS_GetConstructor, JS_NewObject

JS_GetConstructor

Function. Retrieves the constructor for an object.

Syntax JSOhj ect * JS Get Constructor (JSContext *cx, JSObject *proto);
Argument Type Description
CX JSCont ext * Pointer to a JS context from which to derive run time information.
proto JSOhj ect * Pointer to the object for which to retrieve a constructor.

Description JS_Get Const r uct or retrieves the constructor for a specified object, pr ot o.
The constructor is a function that builds the object. If successful,
JS_Get Const ruct or returns a pointer to the constructor object.

102 JavaScript C Engine API Reference

See also

Function Definitions

If prot o does not have any properties, JS_Get Construct or returns NULL. If
pr ot o has properties, but it does not have an associated constructor function,
JS_Get Const ruct or reports the lack of a constructor function and then returns
NULL.

JS_GetParent, JS_GetPrototype

JS_ NewObject

Syntax

Argument Type

Function. Instantiates a new object.

JShj ect * JS Newhj ect (JSContext *cx, JSC ass *cl asp,
JSOhj ect *proto, JSChject *parent);

Description

CcX JSCont ext * Pointer to a JS context from which to derive run time information.

cl asp JSC ass * Pointer to the class to use for the new object.

proto JSOhj ect * Pointer to the prototype object to use for the new class.

par ent JSOhj ect * Pointer to which to set the new object’s __parent__ property.

Description

Note

JS_Newbj ect instantiates a new object based on a specified class, prototype,
and parent object. cx is a pointer to a context associated with the run time in
which to establish the new object. cl asp is a pointer to an existing class to use
for internal methods, such as fi nal i ze. pr ot o is an optional pointer to the
prototype object with which to associate the new object.

Set proto to NULL to force JS to assign a prototype object for you. In this case,
JS_Newbj ect attempts to assign the new object the prototype object
belonging to clasp, if one is defined there. Otherwise, it creates an empty object
stub for the prototype.

par ent is an optional pointer to an existing object to which to set the new
object’s parent object property. You can set par ent to NULL if you do not want
to set the parent property.

On success, JS_New(bj ect returns a pointer to the newly instantiated object.
Otherwise it returns NULL.

To create a new object that is a property of an existing object, use
JS Define(ject.

Chapter 2, JavaScript API Reference 103

Function Definitions

See also

JS_ConstructObject,, JS_DefineObject, JS_ValueToObject, JS_NewArrayObject,
JS_GetFunctionObject

JS_ConstructObject

Syntax

Argument Type

Function. Instantiates a new object and invokes its constructor.

JSOhj ect * JS Construct Obj ect (JSContext *cx, JSC ass *cl asp,
JSCbj ect *proto, JSObject *parent);

Description

CcX JSCont ext * Pointer to a JS context from which to derive run time information.

cl asp JSCl ass * Pointer to the class to use for the new object.

proto JSOhj ect * Pointer to the prototype object to use for the new class.

par ent JSOhj ect * Pointer to which to set the new object’s __parent__ property.

Description

See also

JS_Const ruct Obj ect instantiates a new object based on a specified class,
prototype, and parent object, and then invokes its constructor function. cx is a
pointer to a context associated with the run time in which to establish the new
object. cl asp is a pointer to an existing class to use for internal methods, such
as finalize. proto is an optional pointer to the prototype object with which
to associate the new object.

Set proto to NULL to force JS to assign a prototype object for you. In this case,
JS_New(bj ect attempts to assign the new object the prototype object
belonging to clasp, if one is defined there. Otherwise, it creates an empty object
stub for the prototype.

par ent is an optional pointer to an existing object to which to set the new
object’s parent object property. You can set par ent to NULL if you do not want
to set the parent property.

On success, JS_Const r uct Obj ect returns a pointer to the newly instantiated
object. Otherwise it returns NULL.

JS_NewObiject,, JS_DefineObject, JS_ValueToObject, JS_NewArrayObiject,
JS_GetFunctionObject

104 JavaScript C Engine API Reference

Function Definitions

JS_DefineObject

Function. Instantiates an object that is a property of another object.

Syntax JSObj ect * JS DefineObj ect (JSContext *cx, JSCbject *obj,
const char *name, JSO ass *cl asp, JSObject *proto,

uintN fl ags);
Argument Type Description
CX JSCont ext * Pointer to a JS context from which to derive run time information for error
reporting.
obj JSCbj ect * Object to which this new object belongs as a property.
nane const char *Name of the property that encapsulates the new object in obj .
cl asp JSd ass * Class to use for the new object.
proto JSOhj ect * Prototype object to use for the new object.
fl ags ui nt N Property flags for the new object.

Description JS_Def i neCbj ect instantiates and names a new object for an existing object,
obj . nane is the property name to assign to obj to hold the new object, and
f1 ags contains the property flags to set for the newly created property. The
following table lists possible values you can pass in f | ags, either singly, or
ORd together:

Flag Purpose

JSPROP_ENUMERATE Property is visible to for and in loops.
JSPROP_READONLY Property is read only.

JSPROP_PERMANENT Property cannot be deleted.

JSPROP_EXPORTED Property can be imported by other objects.

JSPROP_| NDEX Property is actually an index into an array of properties, and

is cast to a const char *.

cl asp is a pointer to the base class to use when creating the new object, and
pr ot o is an pointer to the prototype upon which to base the new object. If you
set prot o to NULL, JS sets the prototype object for you. The parent object for
the new object is set to obj .

JS_Defi neQbj ect returns a pointer to the newly created property object if
successful. If the property already exists, or cannot be created,
JS Define(oj ect returns NULL.

Chapter 2, JavaScript API Reference 105

Function Definitions

See also JS_NewObiject, JS_ValueToObiject, JS_DefineConstDoubles, JS_DefineProperties,
JS_DefineProperty, JS_DefinePropertyWithTinyld, JS_DefineFunctions,
JS_DefineFunction, JS_DefineElement

JS_ DefineConstDoubles

Function. Creates one or more constant double-valued properties for an object.

Syntax JSBool JS_Defi neConst Doubl es(JSCont ext *cx, JSObject *obj,
JSConst Doubl eSpec *cds);

Argument Type Description

CX JSCont ext * Pointer to a JS context from which to derive run time information.
obj JShj ect * Obiject for which to create new properties.

*cds JSConst Doubl eSpec * Pointer to an array of structs containing double property values and

property names to create. The last array element must contain zero-
valued members.

Description JS_Def i neConst Doubl es creates one or more properties for a specified object,
obj , where each property consists of a double value. Each property is
automatically assigned attributes as specified in the f I ags field of the
JSConst Doubl eSpec struct pointed to by cds. If flags is set to zero, the
attributes for the property are automatically set to JSPROP_PERMANENT |
JSPROP_READONLY.

cds is a pointer to the first element of an array of JSConst Doubl eSpecs. Each
array element defines a single property name and property value to create. The
nane field of last element of the array must contain a zero value.

JS_Defi neConst Doubl es creates one property for each element in the array
what contains a non-zero nane field.

If successful, JS_Def i neConst Doubl es returns JS_TRUE, indicating it has
created all properties listed in the array. Otherwise it returns JS_FALSE.

See also JS_DefineObiject, JS_DefineProperties, JS_DefineProperty,
JS_DefinePropertyWithTinyld, JS_DefineFunctions, JS_DefineFunction,
JS_DefineElement, JSConstDoubleSpec

JS_DefineProperties

106 JavaScript C Engine API Reference

Argument
cX

obj

ps

Function Definitions

Function. Creates one or more properties for an object.

Syntax JSBool JS Defi neProperties(JSContext *cx, JSCbject *obj,
JSPr opertySpec *ps);

Type Description
JSCont ext * Pointer to a JS context from which to derive run time information.
JShj ect * Obiject for which to create new properties.

JSPropertySpec * Pointer to an array containing names, ids, flags, and getProperty and
setProperty method for the properties to create. The last array element
must contain zero-valued members.

Description JS_Defi neProperti es creates one or more properties in a specified object,

obj .

ps is a pointer to the first element of an array of JSPr opert ySpec structures.
Each array element defines a single property: its name, id, flags, and
getProperty and setProperty methods. The nane field of the last array element
must contain zero-valued members. JS_Def i neProperti es creates one
property for each element in the array with a non-zero nane field.

If successful, JS_Defi neProperties returns JS_TRUE, indicating it has created
all properties listed in the array. Otherwise it returns JS_FALSE.

See also JS_DefineObject, JS_DefineConstDoubles, JS_DefineProperty,

JS_DefinePropertyWithTinyld, JS_DefineFunctions, JS_DefineFunction,
JS_DefineElement, JSPropertySpec

JS_DefineProperty

Argument
cX

obj

name

Function. Creates a single property for a specified object.

Syntax JSBool) JS DefineProperty(JSContext *cx, JSOhject *obj,
const char *name, jsval value, JSPropertyQp getter,
JSPropertyQp setter, uintN flags);

Type Description
JSCont ext * Pointer to a JS context from which to derive run time information.
JShj ect * Object for which to create the new property.

const char * Name for the property to create.

Chapter 2, JavaScript API Reference 107

Function Definitions

val ue j sval Initial value to assign to the property.

getter JSPr opertyQp get Proper ty method for retrieving the current property value.
setter JSPr opertyQp set Proper t y method for specifying a new property value.
flags ui ntN Property flags.

Description JS_Defi neProperty defines a single property in a specified object, obj .

nane is the name to assign to the property in the object. val ue is a jsval that
defines the property’s data type and initial value. gett er and set t er identify
the get Property and set Property methods for the property, respectively. If
you pass null values for these entries, JS_Def i neProperti es assigns the
default get Property and set Property methods to this property. f | ags
contains the property flags to set for the newly created property. The following
table lists possible values you can pass in f | ags, either singly, or OR'd together:

Flag Purpose

JSPROP_ENUMERATE Property is visible in for and in loops.
JSPROP_READONLY Property is read only.

JSPROP_PERVANENT Property cannot be deleted.

JSPROP_EXPORTED Property can be imported by other objects.

JSPROP_I NDEX Property is actually an index into an array of properties, and

iscast to a const char *.

Note While you can assign a set Property method to a property and set flags to
JSPROP_READONLY, the setter method will not be called on this property.

If it successfully creates the property, JS_Def i neProperty returns JS_TRUE. If
the property already exists, or cannot be created, JS_Def i nePr operty returns
JS FALSE.

See also JS_DefineUCProperty, JS_DefineObiject, JS_DefineConstDoubles,
JS_DefineProperties, JS_DefinePropertyWithTinyld, JS_DefineFunctions,
JS_DefineFunction, JS_DefineElement

JS_DefineUCProperty

Function. Creates a single Unicode-encoded property for a specified object.

Syntax JSBool) JS Defi neUCProperty(JSContext *cx, JSCbject *obj,

108 JavaScript C Engine API Reference

Function Definitions

const jschar *nane, size_t nanelen, jsval val ue,
JSPropertyQp getter, JSPropertyOp setter, uintN attrs);

Argument Type Description
CX JSCont ext * Pointer to a JS context from which to derive run time information.
obj JSCbj ect * Object for which to create the new property.
nane const jschar * Name for the property to create.
namel en size_t Length of name, in bytes.
val ue j sval Initial value to assign to the property.
getter JSPr opertyQp get Property method for retrieving the current property value.
setter JSPr opertyQp set Proper t y method for specifying a new property value.
attrs ui nt N Property flags.
Description JS_Def i neUCPr oper t y defines a single Unicode-encoded property in a

Note

specified object, obj .

nane is the Unicode-encoded name to assign to the property in the object.
nanel en is the length, in bytes, of nane. val ue is a jsval that defines the
property’s data type and initial value. getter and setter identify the

get Property and set Property methods for the property, respectively. If you
pass null values for these entries, JS_Def i neUCPr oper ti es assigns the default
get Property and set Property methods to this property. at t rs contains the
property flags to set for the newly created property. The following table lists
possible values you can pass in at t r s, either singly, or OR'd together:

Flag Purpose

JSPROP_ENUMERATE Property is visible in for and in loops.

JSPROP_READONLY Property is read only.

JSPROP_PERVANENT Property cannot be deleted.

JSPROP_EXPORTED Property can be imported by other objects.

JSPROP_I NDEX Property is actually an index into an array of properties, and

is cast to a const char *.

While you can assign a set Property method to a property and set attrs to
JSPROP_READONLY, the setter method will not be called on this property.

If it successfully creates the property, JS_Defi neUCPr operty returns JS_TRUE.
If the property already exists, or cannot be created, JS_Def i neUCPr operty
returns JS_FALSE.

Chapter 2, JavaScript API Reference 109

Function Definitions

See also JS_DefineProperty, JS_DefineObject, JS_DefineConstDoubles,
JS_DefineProperties, JS_DefinePropertyWithTinyld, JS_DefineFunctions,
JS_DefineFunction, JS_DefineElement

JS_DefinePropertyWithTinyld

Function. Creates a single property for a specified object and assigns it an ID
number.

Syntax JSBool JS_DefinePropertyWthTinyld(JSContext *cx,
JSObj ect *obj, const char *name, int8 tinyid, jsval value,
JSPropertyQp getter, JSPropertyOp setter, uintN flags);

Argument Type Description

CX JSCont ext * Pointer to a JS context from which to derive run time information.

obj JSCbj ect * Object for which to create the new property.

nane const char * Name for the property to create.

tinyid int8 8-bit ID to aid in sharing get Pr opert y/set Property methods among
properties.

val ue j sval Initial value to assign to the property.

getter JSPr opertyQp get Property method for retrieving the current property value.

setter JSPr opertyQp set Proper t y method for specifying a new property value.

fl ags uintN Property flags.

Description JS_Defi nePropertyW t hTi nyl d defines a single property for a specified
object, obj .

nane is the name to assign to the property in the object. val ue is a jsval that
defines the property’s data type and initial value.

tinyi d is an 8-bit value that simplifies determining which property to access,
and is especially useful in get Property and set Property methods that are
shared by a number of different properties.

getter and setter identify the get Property and set Property methods for
the property, respectively. If you pass null values for these entries,
JS_Defi nePropertyWthTi nyl d assigns the default get Property and

110 JavaScript C Engine API Reference

Function Definitions

set Property methods to this property. f | ags contains the property flags to
set for the newly created property. The following table lists possible values you
can pass in f | ags, either singly, or ORd together:

Flag Purpose

JSPROP_ENUMERATE Property is visible in for and in loops.
JSPROP_READONLY Property is read only.

JSPROP_PERMANENT Property cannot be deleted.

JSPROP_EXPORTED Property can be imported by other objects.

JSPROP_| NDEX Property is actually an index into an array of properties, and

is cast to a const char *.

Note While you can assign a set Property method to a property and set flags to
JSPROP_READONLY, the setter method will not be called on this property.

If it successfully creates the property, JS_Def i nePropert yW t hTi nyl d returns
JS_TRUE. If the property already exists, or cannot be created, it returns
JS FALSE.

See also JS_DefineObiject, JS_DefineConstDoubles, JS_DefineProperties,
JS_DefineProperty, JS_DefineUCProperty, JS_DefineFunctions,
JS_DefineFunction, JS_DefineElement, JS_DefineUCPropertyWithTinylD

JS_DefineUCPropertyWithTinyID

Function. Creates a single, Unicode-encoded property for a specified object and
assigns it an ID number.

Syntax JSBool JS Defi nePropertyWthTi nyld(JSContext *cx,
JSOhj ect *obj, const jschar *nane, size_t nanelen,
int8 tinyid, jsval value, JSPropertyQp getter,
JSPropertyQp setter, uintN attrs);

Argument Type Description

cX JSCont ext * Pointer to a JS context from which to derive run time information.

obj JShj ect * Object for which to create the new property.

name const jschar * Name for the property to create.

nanel en size_t Length, in bytes, of nane.

tinyid int8 8-bit ID to aid in sharing get Pr opert y/set Property methods among
properties.

Chapter 2, JavaScript API Reference 111

Function Definitions

val ue j sval Initial value to assign to the property.

getter JSPr opertyQp get Property method for retrieving the current property value.
setter JSPr opertyQp set Proper t y method for specifying a new property value.
attrs ui nt N Property flags.

Description JS_Defi neUCPr opert yW t hTi nyl d defines a single, Unicode-encoded
property for a specified object, obj .

nane is the Unicode-encoded name to assign to the property in the object.
nanel en is the length, in bytes, of nane. val ue is a jsval that defines the
property’s data type and initial value.

tinyi d is an 8-bit value that simplifies determining which property to access,
and is especially useful in get Property and set Property methods that are
shared by a number of different properties.

getter and setter identify the get Property and set Property methods for
the property, respectively. If you pass null values for these entries,

JS_Defi neUCPropertyWt hTi nyl d assigns the default get Property and

set Property methods to this property. at t r s contains the property flags to
set for the newly created property. The following table lists possible values you
can pass in sttrs, either singly, or ORd together:

Flag Purpose

JSPROP_ENUMERATE Property is visible in for and in loops.
JSPROP_READONLY Property is read only.

JSPROP_PERVANENT Property cannot be deleted.

JSPROP_EXPORTED Property can be imported by other objects.

JSPROP_I NDEX Property is actually an index into an array of properties, and

is cast to a const char *.

Note While you can assign a set Property method to a property and set attrs to
JSPROP_READONLY, the setter method will not be called on this property.

If it successfully creates the property, JS_Def i neUCPropertyWt hTi nyl d
returns JS_TRUE. If the property already exists, or cannot be created, it returns
JS FALSE.

See also JS_DefineObiject, JS_DefineConstDoubles, JS_DefineProperties,
JS_DefineProperty, JS_DefineUCProperty, JS_DefineFunctions,
JS_DefineFunction, JS_DefineElement, JS_DefinePropertyWithTinyld

112 JavaScript C Engine API Reference

Function Definitions

JS_AliasProperty

Function. Deprecated. Create an alias for a native property.

Syntax JSBool JS _AliasProperty(JSContext *cx, JSCbject *obj,
const char *name, const char *alias);

Argument Type Description

CX JSCont ext * Pointer to a JS context from which to derive run time information.
obj JShj ect * Obiject for which to create the alias.

nane const char * Name of the property for which to create an alias.

alias const char * Alias name to assign to the property.

Description JS_Al i asProperty assigns an alternate name for a property associated with a
native object. obj is the object to which the property belongs. nane is the
property’s current name in the object, and al i as is the alternate name to assign
to the property.

Note This feature is deprecated, meaning that it is currently supported only for
backward compatibility with existing applications. Future versions of the
engine may no longer support this function.

An alias does not replace a property’s name; it supplements it, providing a
second way to reference a property. If the alias is successfully created and
associated with the property, JS_Al i asProperty returns JS_TRUE. Creating an
alias does not change the length of the property array.

If the property name you specify does not exist, JS_Al i asPr operty reports an
error, and returns JS_FALSE. If the property is currently out of scope, already

exists, or the alias itself cannot be assigned to the property, JS_Al i asProperty
does not report an error, but returns JS_FALSE.

Once you create an alias, you can reassign it to other properties as needed.
Aliases can also be deleted. Deleting an alias does not delete the property to
which it refers.

See also JS_DefineProperty, JS_DefineUCProperty, JS_DefinePropertyWithTinyld,
JS_DefineUCPropertyWithTinyID, JS_LookupProperty, JS_GetProperty,
JS_SetProperty, JS_DeleteProperty

Chapter 2, JavaScript API Reference 113

Function Definitions

JS_LookupProperty

Function. Determines if a specified property exists.

Syntax JSBool JS_LookupProperty(JSContext *cx, JSObject *obj,
const char *name, jsval *vp);

Argument Type Description

CX JSCont ext * Pointer to a JS context from which to derive run time information.

obj JShj ect * Object to search on for the property.

nane const char * Name of the property to look up.

vp jsval * Pointer to a variable into which to store the last retrieved value of the property

if it exists. If not, vp is set to JSVAL_VO D.

Description JS_LookupPr operty examines a specified JS object, obj , for a property named
nane. If the property exists, vp is set either to the last retrieved value of the
property if it exists, or to JSVAL_VQ D if it does not, and JS_LookupPr operty
returns JS_TRUE. On error, such as running out of memory during the search,
JS LookupProperty returns JS_FALSE, and vp is undefined.

See also JS_PropertyStub, JS_DefineProperty, JS_DefineUCProperty,
JS_DefinePropertyWithTinyld, JS_DefineUCPropertyWithTinyID,
JS_AliasProperty, JS_GetProperty, JS_SetProperty, JS_DeleteProperty

JS_LookupUCProperty

Function. Determines if a specified, Unicode-encoded property exists.

Syntax JSBool JS LookupUCProperty(JSContext *cx, JSCbject *obj,
const jschar *nane, size_t nanelen, jsval *vp);

Argument Type Description

CX JSCont ext * Pointer to a JS context from which to derive run time information.
obj JShj ect * Object to search on for the property.

name const jschar * Name of the property to look up.

nanel en size_t Length, in bytes, of nane.

vp jsval * Pointer to a variable into which to store the last retrieved value of the

property if it exists. If not, vp is set to JSVAL_VQ D.

114 JavaScript C Engine API Reference

Description

See also

Function Definitions

JS_LookupUCPr operty examines a specified JS object, obj , for a Unicode-
encoded property named nane. narel en indicates the size, in bytes, of nane. If
the property exists, vp is set either to the last retrieved value of the property if
it exists, or to JSVAL_VA D if it does not, and JS_LookupPr operty returns
JS_TRUE. On error, such as running out of memory during the search,
JS_LookupProperty returns JS_FALSE, and vp is undefined.

JS_LookupProperty, JS_PropertyStub, JS_DefineProperty, JS_DefineUCProperty,
JS_DefinePropertyWithTinyld, JS_DefineUCPropertyWithTinyID,
JS_AliasProperty, JS_GetProperty, JS_SetProperty, JS_DeleteProperty

JS_GetProperty

Function. Finds a specified property and retrieves its value.

Syntax JSBool JS_Get Property(JSContext *cx, JSObject *obj,
const char *nanme, jsval *vp);
Argument Type Description
CX JSCont ext * Pointer to a JS context from which to derive run time information.
obj JShj ect * Obiject to search on for the property.
nane const char * Name of the property to look up.
vp jsval * Pointer to a variable into which to store the current value of the property if it
exists. If not, vp is set to JSVAL_VQA D.
Description JS_Get Property examines a specified JS object, obj , its scope and prototype
links, for a property named nane. If the property is not defined on the object in
its scope, or in its prototype links, vp is set to JSVAL_VQ D.
If the property exists, JS_Get Property sets vp to the current value of the
property, and returns JS_TRUE. If an error occurs during the search,
JS Get Property returns JS_FALSE, and vp is undefined.
See also JS_PropertyStub, JS_DefineProperty, JS_DefineUCProperty,

JS_DefinePropertyWithTinyld, JS_DefineUCPropertyWithTinyID,
JS_AliasProperty, JS_LookupProperty, JS_GetUCProperty, JS_SetProperty,
JS_SetUCProperty, JS_DeleteProperty, JS_DeleteProperty2,
JS_DeleteUCProperty2

Chapter 2, JavaScript API Reference 115

Function Definitions

JS GetUCProperty

Function. Finds a specified, Unicode-encoded property and retrieves its value.

Syntax JSBool JS_Get UCProperty(JSContext *cx, JSCbject *obj,
const jschar *nane, size_t nanelen, jsval *vp);
Argument Type Description
CX JSCont ext * Pointer to a JS context from which to derive run time information.
obj JShj ect * Object to search on for the property.
nane const jschar * Name of the property to look up.

namel en size_t
vp j sval

Description

See also

Length, in bytes of the the property name to look up.

* Pointer to a variable into which to store the current value of the property if it

exists. If not, vp is set to JSVAL_VQ D.

JS_Get UCProperty examines a specified JS object, obj , its scope and
prototype links, for a property named nane. nanel en indicates the size, in
bytes, of nane. If the property is not defined on the object in its scope, or in its
prototype links, vp is set to JSVAL_VQO D.

If the property exists, JS_Get UCPr operty sets vp to the current value of the
property, and returns JS_TRUE. If an error occurs during the search,
JS Get UCProperty returns JS_FALSE, and vp is undefined.

JS_PropertyStub, JS_DefineProperty, JS_DefineUCProperty,
JS_DefinePropertyWithTinyld, JS_DefineUCPropertyWithTinyID,
JS_AliasProperty, JS_LookupProperty, JS_GetProperty, JS_SetProperty,
JS_SetUCProperty, JS_DeleteProperty, JS_DeleteProperty2,
JS_DeleteUCProperty2

JS SetProperty

Syntax

Function. Sets the current value of a property belonging to a specified object.

JSBool JS Set Property(JSContext *cx, JSObject *obj,

116 JavaScript C Engine API Reference

Argument Type

cX
obj
name

vp

Function Definitions

const char *name, jsval *vp);
Description

JSCont ext * Pointer to a JS context from which to derive run time information.

JShj ect * Obiject to which the property to set belongs.

const char * Name of the property to set.

j sval

Description

See also

* Pointer to the value to set for the property.

JS_Set Property sets the current value of a property for a specified object. If
the property does not exist, this function creates it, and inherits its attributes
from a like-named property in the object’s prototype chain. For properties it
creates, JS_Set Property sets the JSPROP_ENUVERATE attribute in the
property’s f | ags field; all other values for the property are undefined.

nane is the property to set, and vp is a pointer to the new value to set for the
property. On successfully setting a property to a new value, JS_Set Property
returns JS_TRUE. Otherwise it returns JS_FALSE.

If you attempt to set the value for a read-only property using JavaScript 1.2 or
earlier, JS_Set Pr oper ty reports an error and returns JS_FALSE. For JavaScript
1.3 and greater, such an attempt is silently ignored.

If you attempt to set the value for a property that does not exist, and there is a
like-named read-only property in the object’s prototype chain,

JS_Set Property creates a new read-only property on the object, sets its value
to JSVAL_VA D, and reports a read-only violation error.

JS_PropertyStub, JS_DefineProperty, JS_DefineUCProperty,
JS_DefinePropertyWithTinyld, JS_DefineUCPropertyWithTinyID,
JS_AliasProperty, JS_LookupProperty, JS_GetProperty, JS_GetUCProperty,
JS_SetUCProperty, JS_DeleteProperty, JS_DeleteProperty?2,
JS_DeleteUCProperty2

JS SetUCProperty

Syntax

Function. Sets the current value of a Unicode-encoded property belonging to a
specified object.

JSBool JS Set UCProperty(JSContext *cx, JSCbject *obj,

Chapter 2, JavaScript API Reference 117

Function Definitions

const char *name, jsval *vp);

Argument Type Description

cX JSCont ext * Pointer to a JS context from which to derive run time information.
obj JShj ect * Object to which the property to set belongs.

name const jschar * Name of the property to set.

nanel en size_t
vp j sval

Description

See also

Length, in bytes, of the name of the property to set.

* Pointer to the value to set for the property.

JS_Set UCPr operty sets the current value of a property for a specified object.
If the property does not exist, this function creates it, and inherits its attributes
from a like-named property in the object’s prototype chain. For properties it
creates, JS_Set UCPr operty sets the JSPROP_ENUVMERATE attribute in the
property’s f | ags field; all other values for the property are undefined.

nane is the property to set, nanel en indicates the size, in bytes, of nane, and

vp is a pointer to the new value to set for the property. On successfully setting
a property to a new value, JS_Set UCPr oper ty returns JS_TRUE. Otherwise it
returns JS_FALSE.

If you attempt to set the value for a read-only property using JavaScript 1.2 or
earlier, JS_Set UCPr operty reports an error and returns JS_FALSE. For
JavaScript 1.3 and greater, such an attempt is silently ignored.

If you attempt to set the value for a property that does not exist, and there is a
like-named read-only property in the object’s prototype chain,

JS_Set UCPr operty creates a new read-only property on the object, sets its
value to JSVAL_VQ D, and reports a read-only violation error.

JS_PropertyStub, JS_DefineProperty, JS_DefineUCProperty,
JS_DefinePropertyWithTinyld, JS_DefineUCPropertyWithTinyID,
JS_AliasProperty, JS_LookupProperty, JS_GetProperty, JS_GetUCProperty,
JS_SetProperty, JS_DeleteProperty, JS_DeleteProperty2, JS_DeleteUCProperty2

JS_DeleteProperty

Syntax

Function. Removes a specified property from an object.

JSBool JS Del et eProperty(JSCont ext *cx, JSObject *obj,

118 JavaScript C Engine API Reference

Function Definitions

const char *nane);

Argument Type Description

cX JSCont ext * Pointer to a JS context from which to derive run time information.
obj JShj ect * Object from which to delete a property.

name const char * Name of the property to delete.

Description JS_Del et eProperty removes a specified property, nane, from an object, obj .
If an object references a property belonging to a prototype, the property
reference is removed from the object, but the prototype’s property is not
deleted. If deletion is successful, JS _Del et eProperty returns JS_TRUE.
Otherwise it returns JS_FALSE.

Note Per the ECMA standard, JS_Del et ePr operty removes read-only properties
from objects as long as those properties are not also permanent.

For JavaScript 1.2 and earlier, if failure occurs because you attempt to delete a
permanent property, JS Del et ePr operty reports the error before returning
JS_FALSE. For JavaScript 1.3, the attempt is silently ignored.

Note To remove all properties from an object, call JS_C ear Scope.

See also JS_PropertyStub, JS_DefineProperty, JS_DefineUCProperty,
JS_DefinePropertyWithTinyld, JS_DefineUCPropertyWithTinyID,
JS_AliasProperty, JS_LookupProperty, JS_GetProperty, JS_SetProperty,
JS_LookupUCProperty, JS_GetUCProperty, JS_SetUCProperty,
JS_DeleteProperty2, JS_DeleteUCProperty2, JS_ClearScope

JS_DeleteProperty?2

Function. Removes a specified property from an object.

Syntax JSBool JS Del et eProperty2(JSCont ext *cx, JSOhject *obj,
const char *nanme, jsval *rva);

Argument Type Description

cX JSCont ext * Pointer to a JS context from which to derive run time information.
obj JShj ect * Object from which to delete a property.

name const char * Name of the property to delete.

rval jsval * Pointer to the deleted value.

Chapter 2, JavaScript API Reference 119

Function Definitions

Description JS_Del et eProperty2 removes a specified property, nane, from an object,

obj , and stores a pointer to the deleted property in rval . If rval is NULL, the
property is deleted. If an object references a property belonging to a prototype,
the property reference is removed from the object, but the prototype’s property
is not deleted. If deletion is successful, JS_Del et ePr operty?2 returns JS_TRUE.

Otherwise it returns JS_FALSE.

Note Per the ECMA standard, JS_Del et ePr opert y2 removes read-only properties
from objects as long as those properties are not also permanent.

For JavaScript 1.2 and earlier, if failure occurs because you attempt to delete a
permanent property, JS_Del et ePr operty2 reports the error before returning

JS_FALSE. For JavaScript 1.3, the attempt is silently ignored. In both these
cases, rval will contain a non-NULL pointer to the undeleted property.

Note To remove all properties from an object, call JS_Cl ear Scope.

See also JS_PropertyStub, JS_DefineProperty, JS_DefineUCProperty,
JS_DefinePropertyWithTinyld, JS_DefineUCPropertyWithTinyID,
JS_AliasProperty, JS_LookupProperty, JS_GetProperty, JS_SetProperty,
JS_LookupUCProperty, JS_GetUCProperty, JS_SetUCProperty,
JS_DeleteProperty, JS_DeleteUCProperty2, JS_ClearScope

JS_DeleteUCProperty2

Function. Removes a specified Unicode-encoded property from an object.

Syntax JSBool JS Del et eUCProperty2(JSContext *cx, JSCbject *obj,
const jschar *nane, size_t nanelen, jsval *rva);

Argument Type Description

CX JSCont ext * Pointer to a JS context from which to derive run time information.
obj JSCbj ect * Object from which to delete a property.

nane const jschar * Name of the property to delete.

namel en size_t Length, in bytes, of the property name.

rval jsval * Pointer to the deleted value.

Description JS_Del et eUCPr opert y2 removes a specified property, narme, from an object,
obj , and stores a pointer to the deleted property in rval . If rval is NULL, the

property is deleted. nanel en is the size, in bytes, of the property name to

delete. If an object references a property belonging to a prototype, the property

120 JavaScript C Engine API Reference

Note

Note

See also

Function Definitions

reference is removed from the object, but the prototype’s property is not
deleted. If deletion is successful, JS_Del et eUCPr oper t y2 returns JS_TRUE.
Otherwise it returns JS_FALSE.

Per the ECMA standard, JS_Del et eUCPr oper t y2 removes read-only properties
from objects as long as those properties are not also permanent.

For JavaScript 1.2 and earlier, if failure occurs because you attempt to delete a
permanent property, JS_Del et eUCPr opert y2 reports the error before
returning JS_FALSE. For JavaScript 1.3, the attempt is silently ignored. In both
these cases, rval will contain a non-NULL pointer to the undeleted property.

To remove all properties from an object, call JS_C ear Scope.

JS_PropertyStub, JS_DefineProperty, JS_DefineUCProperty,
JS_DefinePropertyWithTinyld, JS_DefineUCPropertyWithTinyID,
JS_AliasProperty, JS_LookupProperty, JS_GetProperty, JS_SetProperty,
JS_LookupUCProperty, JS_GetUCProperty, JS_SetUCProperty,
JS_DeleteProperty, JS_DeleteProperty2, JS_ClearScope

JS_GetPropertyAttributes

Function. Retrieves the attributes of a specified property.

Syntax JSBool JS Get PropertyAttributes(JSContext *cx, JSObject *obj,
const char *nanme, uintN *attrsp, JSBool *foundp);
Argument Type Description
cX JSCont ext * Pointer to a JS context from which to derive run time information.
obj JShj ect * Object from which to retrieve property attributes.
name const char * Name of the property from which to retrieve attributes.
uintN attrsp * Pointer to the storage area into which to place retrieves attributes.
f oundp JSBool * Flag indicating whether or not the specified property was located.

Description

JS_Get PropertyAttri butes retrieves the attributes for a specified property,
nane. cx is the context, and obj is a pointer to the object that owns the
property. att r sp is a pointer to the unsigned integer storage area into which to
retrieve the attributes.

If JS_Get PropertyAttri butes cannot locate an object with the specified
property, it returns JS_FALSE, and both at t r sp and f oundp are undefined.

Chapter 2, JavaScript API Reference 121

Function Definitions

If the specified property or the specified object does not exist, f oundp is set to
JS_FALSE. If the property exists, but belongs to another object,

JS Get PropertyAttributes then returns JS FALSE, and attrsp is
undefined. If the property exists and it belongs to the object you specify, then
foundp is setto JS TRUE. If JS_Get Proper t yAt t ri but es can actually read the
current property values, it returns JS_TRUE. Otherwise, it returns JS_FALSE.

See also JS_SetPropertyAttributes

JS_SetPropertyAttributes

Function. Sets the attributes for a specified property.

Syntax JSBool JS Set PropertyAttributes(JSContext *cx, JSObject *obj,
const char *name, uintN attrs, JSBool *foundp);

Argument Type Description

cX JSCont ext * Pointer to a JS context from which to derive run time information.
obj JShj ect * Object for which to set property attributes.

name const char * Name of the property for which to set attributes.

uintN attrsp Attribute values to set.

f oundp JSBool * Flag indicating whether or not the specified property was located.

Description JS_Set PropertyAttri but es sets the attributes for a specified property, nane.
cx is the context, and obj is a pointer to the object that owns the property.
attrsp is an unsigned integer containing the attribute value to set, and can
contain 0 or more of the following values ORd:

JSPROP_ENUMERATE: property is visible in for loops.
JSPROP_READONLY: property is read-only.

JSPROP_PERMANENT: property cannot be deleted.
JSPROP_EXPORTED: property can be exported outside its object.
JSPROP_I NDEX: property is actually an array element.

If JS_Set PropertyAttributes cannot locate an object with the specified
property, it returns JS_FALSE, and f oundp is undefined.

122 JavaScript C Engine API Reference

See also

Function Definitions

If the specified property or the specified object does not exist, f oundp is set to
JS_FALSE. Then, iff the property exists, but is associated with a different object,
JS Set PropertyAttributes returns JS TRUE. Otherwise, it sets f oundp to

JS_TRUE, and attempts to set the attributes as specified. If the attributes can be
set, JS Set PropertyAttributes returns JS_TRUE. If not, it returns JS_FALSE.

JS_GetPropertyAttributes

JS_NewArrayObject

Syntax

Argument Type

Function. Creates a new array object.

JSOhj ect * JS NewArrayQbj ect (JSContext *cx, jsint |ength,
jsval *vector);

Description

CcX JSCont ext * Pointer to a JS context from which to derive run time information.

| ength j sint

vect or j sval
Description
See also

Number of elements to include in the array.
* Pointer to the storage location for the array.

JS_NewAr rayQbj ect creates a new array object for a specified executable
script context, cx. If array creation is successful, JS_NewAr r aybj ect initializes
each element in the array as an individually indexed property, and returns a
pointer to the new object. Otherwise it returns NULL.

| engt h specifies the number of elements, or slots, in the array. If length is 0,
JS_NewAr rayQbj ect creates the array object, but does not initialize any array
elements.

JS_IsArrayObiject, JS_GetArrayLength, JS_SetArrayLength, JS_DefineElement,
JS_AliasElement, JS_LookupElement, JS_GetElement, JS_SetElement,
JS_DeleteElement

JS_IsArrayObject

Function. Determines if a specified object is of the Array class.

Chapter 2, JavaScript API Reference 123

Function Definitions

Syntax JSBool JS | sArrayObj ect (JSContext *cx, JSCbject *obj);
Argument Type Description
cX JSCont ext * Pointer to a JS context from which to derive run time information.
obj JSOhj ect * Object to examine.

Description JS_I sArrayhj ect determines if a specified object, obj , is of the Array class.
If the object is of the Array class, JS | sArrayQbj ect returns JS_TRUE.
Otherwise it returns JS_FALSE.

See also JS_NewArrayObiject, JS_GetArrayLength, JS_SetArrayLength, JS_DefineElement,
JS_AliasElement, JS_LookupElement, JS_GetElement, JS_SetElement,
JS_DeleteElement

JS_GetArraylLength

Function. Retrieves the number of elements in an array object.

Syntax JSBool JS Get ArraylLengt h(JSContext *cx, JSObject *obj,
jsint *lengthp);

Argument Type Description

CcX JSCont ext * Pointer to the JS context for the object.

obj JSOhj ect * Array object for which the number of array elements.
lengthp jsint * Variable in which to report the number of array elements.

Description JS_Get ArrayLengt h reports the number of elements in an array object, obj . If
the number of elements can be determined, JS_Get Arr ayLengt h reports the
number of elements in | engt hp and returns JS_TRUE. Otherwise, it sets
| engt hp to NULL and returns JS_FALSE.

See also JS_NewArrayObiject, JS_IsArrayObject, JS_SetArrayLength, JS_DefineElement,
JS_AliasElement, JS_LookupElement, JS_GetElement, JS_SetElement,
JS_DeleteElement

JS_SetArrayLength

Function. Specifies the number of elements for an array object.

124 JavaScript C Engine API Reference

Function Definitions

Syntax JSBool JS_Set ArraylLengt h(JSCont ext *cx, JSObject *obj,
jsint length);
Argument Type Description
CX JSCont ext * Pointer to a JS context from which to derive run time information.
obj JSOhj ect * Array object for which to set the number of array elements.

| ength j sint

Description

Note

See also

Number of array elements to set.

JS_Set ArrayLengt h specifies the number of elements for an array object, obj .
| engt h indicates the number of elements. If JS_Set Arr ayLengt h successfully
sets the number of elements, it returns JS_TRUE. Otherwise it returns

JS FALSE.

You can call JS_Set ArrayLengt h either to set the number of elements for an
array object you created without specifying an initial number of elements, or to
change the number of elements allocated for an array. If you set a shorter array
length on an existing array, the elements that no longer fit in the array are
destroyed.

Setting the number of array elements does not initialize those elements. To
initialize an element call JS_Def i neEl enent . If you call JS_Set ArrayLengt h
on an existing array, and | engt h is less than the highest index number for
previously defined elements, all elements greater than or equal to | engt h are
automatically deleted.

JS_NewArrayObiject, JS_IsArrayObject, JS_GetArrayLength, JS_DefineElement,
JS_AliasElement, JS_LookupElement, JS_GetElement, JS_SetElement,
JS_DeleteElement

JS_HasArraylLength

Syntax

Description

Function. Determines if an object has an array length property.

JSBool JS HasArraylLengt h(JSCont ext *cx, JSObject *obj,
jsuint *lengthp);

JS_HasArrayLengt h determines if an object, obj , has a length property. If the
property exists, JS_HasArr ayLengt h returns the current value of the property
in | engt hp.

Chapter 2, JavaScript API Reference 125

Function Definitions

On success, JS _HasArraylLengt h returns JS_TRUE, and | engt hp indicates the
current value of the array property. On failure, JS_HasArr ayLengt h returns
JS _FALSE, and | engt hp is undefined.

See also JS_NewArrayObiject, JS_IsArrayObiject, JS_GetArrayLength, JS_SetArrayLength,
JS_DefineElement, JS_AliasElement, JS_LookupElement, JS_GetElement,
JS_SetElement, JS_DeleteElement

JS DefineElement

Function. Creates a single element or numeric property for a specified object.

Syntax JSBool JS Defi neEl enent (JSCont ext *cx, JSCbject *obj,
jsint index, jsval value, JSPropertyQOp getter,
JSPropertyQp setter, uintN flags);

Argument Type Description

CX JSCont ext * Pointer to a JS context from which to derive run time information.
obj JShj ect * Obiject for which to create the new element.

i ndex jsint Array index number for the element to define.

val ue j sval Initial value to assign to the element.

getter JSPr opertyQ get Property method for retrieving the current element value.
setter JSPr opertyQp set Pr oper t y method for specifying a new element value.

fl ags ui nt N Property flags.

Description JS_Defi neEl enment defines a single element or numeric property for a
specified object, obj .

i ndex is the slot number in the array for which to define an element. It may be
an valid jsval integer. val ue is a jsval that defines the element’s data type and
initial value. getter and setter identify the get Property and set Property
methods for the element, respectively. If you pass null values for these entries,
JS_Defi neEl enent assigns the default get Property and set Property

126 JavaScript C Engine API Reference

Note

See also

Function Definitions

methods to this element. f | ags contains the property flags to set for the newly
created element. The following table lists possible values you can pass in
f1 ags, either singly, or OR'd together:

Flag Purpose

JSPROP_ENUMERATE Element is visible in for and in loops.
JSPROP_READONLY Element is read only.

JSPROP_PERMANENT Element cannot be deleted.

JSPROP_EXPORTED Element can be imported by other objects.

JSPROP_| NDEX Property is actually an index into an array of properties, and

is cast to a const char *.

While you can assign a set Property method to a property and set flags to
JSPROP_READONLY, the setter method will not be called on this property.

If it successfully creates the element, JS_Def i neEl enent returns JS_TRUE.
Otherwise it returns JS_FALSE.

JS_DefineObiject, JS_DefineConstDoubles, JS_DefineProperties,
JS_DefineProperty, JS_DefinePropertyWithTinyld, JS_DefineFunctions,
JS_DefineFunction, JS_NewArrayObiject, JS_IsArrayObiject, JS_GetArrayLength,
JS_AliasElement, JS_LookupElement, JS_GetElement, JS_SetElement,
JS_DeleteElement

JS_AliasElement

Function. Deprecated. Create an aliased index entry for an existing element or
numeric property of a native object.

Syntax JSBool JS AliasEl enent (JSCont ext *cx, JSCbject *obj,
const char *nane, jsint alias);
Argument Type Description
cX JSCont ext * Pointer to a JS context from which to derive run time information.
obj JShj ect * Obiject for which to create the alias.
name const char * Name of the element for which to create an alias. This name corresponds to a

alias j sint

string representation of the element’s current index number.
Alias number to assign to the element.

Chapter 2, JavaScript API Reference 127

Function Definitions

Description JS_Al i asEl ement assigns an alternate index number for an element or
numeric property associated with a native object. obj is the object to which the
element belongs. nane is the element’s current index in the object, and al i as
is the alternate index to assign to the element.

Note This feature is deprecated, meaning that it is currently supported only for
backward compatibility with existing applications. Future versions of the
engine may no longer support this function.

An alias does not replace an element’s current index number; it supplements it,
providing a second way to reference the element. If the alias is successfully
created and associated with the property, JS_Al i asEl ement returns JS_TRUE.
Adding an alias element does not change the element array length.

If the property name you specify does not exist, JS_Al i asEl enent reports an
error, and returns JS_FALSE. If the element is currently out of scope, already

exists, or the alias itself cannot be assigned to the element, JS_Al i asEl enent
does not report an error, but returns JS_FALSE.

Once you create an alias, you can reassign it to other elements as needed.
Aliases can also be deleted. Deleting an alias does not delete the element to
which it refers.

See also JS_NewArrayObiject, JS_IsArrayObiject, JS_GetArrayLength, JS_SetArrayLength,
JS_DefineElement, JS_LookupElement, JS_GetElement, JS_SetElement,
JS_DeleteElement

JS_LookupElement

Function. Determines if a specified element or numeric property exists.

Syntax JSBool JS_LookupEl enent (JSCont ext *cx, JSCbject *obj,
jsint index, jsval *vp);

Argument Type Description

CX JSCont ext * Pointer to a JS context from which to derive run time information.

obj JSObj ect * Object to search on for the element.

i ndex j sint Index number of the element to look up.

vp jsval * Pointer to a variable into which to store the current value of the element if it has

a value. If not, vp is set to JSVAL_VQ D.

128 JavaScript C Engine API Reference

Function Definitions

Description JS_LookupEl enment examines a specified JS object, obj , for an element or
numeric property numbered i ndex. If the element exists, vp is set either to the
current value of the property if it has a value, or to JSVAL_VO D if it does not,
and JS_LookupEl enent returns JS_TRUE. On error, such as running out of
memory during the search, JS_LookupEl ement returns JS_FALSE, and vp is
undefined.

See also JS_NewArrayObiject, JS_IsArrayObiject, JS_GetArrayLength, JS_SetArrayLength,
JS_DefineElement, JS_AliasElement, JS_GetElement, JS_SetElement,
JS_DeleteElement

JS GetElement

Function. Finds specified element or numeric property associated with an
object or the object’s class and retrieves its current value.

Syntax JSBool JS_Cet El ement (JSCont ext *cx, JSObj ect *obj, jsint index,

jsval *vp);
Argument Type Description
CX JSCont ext * Pointer to a JS context from which to derive run time information.
obj JSObj ect * Array object to search on for the element.
i ndex j sint Index number of the element to look up.
vp jsval * Pointer to a variable into which to store the current value of the element if it has

a value. If not, vp is set to JSVAL_VQ D.

Description JS_Get El enent examines a specified JS object, obj , its scope and prototype
links, for an element or numeric property numbered i ndex.

If the element exists, JS_Get El ement sets vp to the current value of the
element if it has a value, or to JSVAL_VQ Dif it does not, and returns JS_TRUE.
If an error occurs during the search, JS_Get El enent returns JS_FALSE, and vp
is undefined.

See also JS_NewArrayObiject, JS_IsArrayObiject, JS_GetArrayLength, JS_SetArrayLength,
JS_DefineElement, JS_AliasElement, JS_LookupElement, JS_SetElement,
JS_DeleteElement

JS SetElement

Chapter 2, JavaScript API Reference 129

Function Definitions

Function. Sets the current value of an element or numeric property belonging
to a specified object.

Syntax JSBool JS_ Set El enent (JSCont ext *cx, JSObject *obj, jsint index,

jsval *vp);
Argument Type Description
cX JSCont ext * Pointer to a JS context from which to derive run time information.
obj JSOhj ect * Array object to which the element to set belongs.
i ndex jsint Index number of the element to set.
vp jsval * Pointer to the value to set for the element.

Description JS_Set El enent sets the current value of an element or numeric property for a
specified object. If the element does not exist, this function creates it, and
inherits its attributes from a like-named element in the object’s prototype chain.
For elements it creates, JS_Set El ement sets the JSPROP_ENUMERATE attribute
in the element’s f | ags field; all other values for the property are undefined.

i ndex is element number to set, and vp is a pointer to the new value to set for
the element. On successfully setting an element to a new value,
JS Set El enent returns JS_TRUE. Otherwise it returns JS_FALSE.

If you attempt to set the value for a read-only element using JavaScript 1.2 or
earlier, JS_Set El enent reports an error and returns JS_FALSE. For JavaScript
1.3 and greater, such an attempt is silently ignored.

If you attempt to set the value for an element that does not exist, and there is a
like-named read-only element in the object’s prototype chain, JS_Set El enent
creates a new read-only element on the object, sets its value to JSVAL_VO D,
and reports a read-only violation error.

See also JS_NewArrayObiject, JS_IsArrayObiject, JS_GetArrayLength, JS_SetArrayLength,
JS_DefineElement, JS_AliasElement, JS_LookupElement, JS_GetElement,
JS_DeleteElement

JS DeleteElement

Function. Public. Removes a specified element or numeric property from an
object.

Syntax JSBool JS Del et eEl enent (JSCont ext *cx, JSCbject *obj,

130 JavaScript C Engine API Reference

Function Definitions

jsint index);

Argument Type Description

cX JSCont ext * Pointer to a JS context from which to derive run time information.
obj JSOhj ect * Object from which to delete an element.

i ndex jsint Index number of the element to delete.

Description JS_Del et eEl ement removes a specified element or numeric property, i ndex,
from an object, obj . If an object references an element belonging to a
prototype, the element reference is removed from the object, but the
prototype’s element is not deleted. If deletion is successful, JS_Del et eEl enent
returns JS_TRUE. Otherwise it returns JS_FALSE.

For JavaScript 1.2 and earlier, if failure occurs because you attempt to delete a
permanent or read-only element, JS_Del et ePr operty reports the error before
returning JS_FALSE. For JavaScript 1.3, the attempt is silently ignored.

Note To remove all elements and properties from an object, call JS_C ear Scope.

See also JS_NewArrayObiject, JS_IsArrayObiject, JS_GetArrayLength, JS_SetArrayLength,
JS_DefineElement, JS_AliasElement, JS_LookupElement, JS_GetElement,
JS_SetElement, JS_DeleteElement2, JS_ClearScope

JS DeleteElement2

Function. Removes a specified element or numeric property from an object.

Syntax JSBool JS Del et eEl enent 2(JSCont ext *cx, JSObj ect *obj,
const char *nane, jsval *rva);

Argument Type Description

cX JSCont ext * Pointer to a JS context from which to derive run time information.
obj JShj ect * Object from which to delete an element.

name const char * Name of the element to delete.

rval jsval * Pointer to the deleted value.

Description JS_Del et eEl ement 2 removes a specified element, nanme, from an object, obj ,
and stores a pointer to the deleted element in rval . If rval is NULL, the
element is deleted. If an object references an element belonging to a prototype,

Chapter 2, JavaScript API Reference 131

Function Definitions

the element reference is removed from the object, but the prototype’s element
is not deleted. If deletion is successful, JS _Del et eEl enent 2 returns JS_TRUE.
Otherwise it returns JS_FALSE.

Note Per the ECMA standard, JS_Del et eEl enment 2 removes read-only elements from
objects as long as those elements are not also permanent.

For JavaScript 1.2 and earlier, if failure occurs because you attempt to delete a
permanent element, JS_Del et eEl enent 2 reports the error before returning
JS_FALSE. For JavaScript 1.3, the attempt is silently ignored. In both these
cases, rval will contain a non-NULL pointer to the undeleted element.

Note To remove all elements and properties from an object, call JS_C ear Scope.

See also JS_NewArrayObiject, JS_IsArrayObiject, JS_GetArrayLength, JS_SetArrayLength,
JS_DefineElement, JS_AliasElement, JS_LookupElement, JS_GetElement,
JS_SetElement, JS_DeleteElement, JS_ClearScope

JS ClearScope

Function. Removes all properties associated with an object.

Syntax void JS O ear Scope(JSContext *cx, JSOhject *obj);

Argument Type Description
cX JSCont ext * Pointer to a JS context from which to derive run time information.
obj JSOhj ect * Object from which to delete all properties.

Description JS_C ear Scope removes all properties and elements from obj in a single
operation. To remove a single property from an object, call
JS Del et eProperty, and to remove a single array object element, call
JS Del et eEl enent .

Seealso JS_GetScopeChain, JS_DeleteProperty, JS_DeleteElement

JS _Enumerate

Function. Enumerates the properties of a specified object.

Syntax JSIdArray * JS Enunerate(JSContext *cx, JSOhject *obj);

132 JavaScript C Engine API Reference

Function Definitions

Description JS_Enuner at e enumerates all properties of a specified object, obj , and returns
an array of property IDs for them. Enumeration occurs in a specified context,
CX.

On success, JS_Enuner at e returns a pointer to an array of property IDs. On
failure, it returns NULL.

JS_CheckAccess

Function. Determines the scope of access to an object.

Syntax JSBool JS CheckAccess(JSContext *cx, JSOhject *obj, jsid id,
JSAccessMbde nobde, jsval *vp, uintN *attrsp);

Description JS_CheckAccess determines the scope of access to an object, obj , and its
scope chain. Checking occurs in a specified context, cx.

i d is the JS ID of a property belonging to the object. node determines the scope
of the access check, and can be one or more of the following enumerated
values ORd:

= JSACC PROTO Permission is granted to check both the object itself and its
underlying propotype object.

= JSACC_PARENT: Permission is granted to check both the object itself and its
underlying parent object.

e JSACC | MPORT: Permission is granted to check an imported object.
= JSACC_WATCH: Permission is granted to check a debugger watch object.

On success, JS_CheckAccess returns JS_TRUE, vp points to the current value
of the specified property, identified by i d, and at t r sp points to the value of
the attribute flag for that property. On failure, JS_CheckAccess returns

JS FALSE, and both vp and at t r sp are undefined.

JS_ NewFunction

Function. Creates a new JS function that wraps a native C function.

Syntax JSFunction * JS _Newkunction(JSContext *cx, JSNative call,

Chapter 2, JavaScript API Reference 133

Function Definitions

Argument Type

uintN nargs, uintN flags, JSCbject *parent,
const char *nane);

Description

cX JSCont ext * Pointer to a JS context from which to derive run time information.

cal | JSNat i ve Native C function call wrapped by this function.

nar gs uintN
fl ags ui nt N

Number of arguments that are passed to the underlying C function.
Function attributes.

par ent JShj ect * Pointer to the parent object for this function.

name const char * Name to assign to the new function. If you do not assign a hame to the

Description

See also

function, it is assigned the name “anonymous”.

JS_NewFunct i on creates a new JS function based on the parameters you pass.
cal | is a native C function call that this function wraps. If you are not
wrapping a native function, use JS_Def i neFunct i on, instead. nar gs is the
number of arguments passed to the underlying C function. JS uses this
information to allocate space for each argument.

f1 ags lists the attributes to apply to the function. Currently documented
attributes, JSFUN_BOUND_METHOD and JSFUN_GLOBAL_PARENT, are deprecated
and should no longer be used. They continue to be supported only for existing
applications that already depend on them.

par ent is the parent object for this function. If a function has no parent, you
can set par ent to NULL. nane is the name to assign to the function. If you pass
an empty value, JS sets the function’s name to anonynous.

If 3S_NewFunct i on is successful, it returns a pointer to the newly created
function. Otherwise it returns NULL.

JSFUN_BOUND_ METHOD, JSFUN_GLOBAL PARENT, JS ValueToFunction,
JS_GetFunctionObject, JS_GetFunctionName, JS_DefineFunctions,
JS_DefineFunction, JS_CompileFunction, JS_CompileUCFunction,
JS_DecompileFunction, JS_DecompileFunctionBody, JS_CallFunction,
JS_CallFunctionName, JS_CallFunctionValue, JS_SetBranchCallback

JS_GetFunctionObject

Syntax

Function. Retrieves the object for a specified function.

JSObj ect * JS Get Functi onCbj ect (JSFunction *fun);

134 JavaScript C Engine API Reference

Description

See also

Function Definitions

JS_Get Functi onbj ect retrieves the object for a specified function pointer,
f un. All functions are associated with an underlying object. For functions you
create with JS_NewFunct i on, the object is automatically created for you. For
functions you define with JS_Def i neFuncti on and JS_Def i neFuncti ons,
you specify the object(s) as a parameter.

JS_Get Functi onChbj ect always returns a pointer to an object.

JSFUN_BOUND_METHOD, JSFUN_GLOBAL PARENT, JS ValueToFunction,
JS_NewFunction, JS_GetFunctionName, JS_DefineFunctions, JS_DefineFunction,
JS_CompileFunction, JS_CompileUCFunction, JS_DecompileFunction,
JS_DecompileFunctionBody, JS_CallFunction, JS_CallFunctionName,
JS_CallFunctionValue, JS_SetBranchCallback

JS_GetFunctionName

Syntax

Description

Note

See also

Function. Retrieves the given name for a specified function.
const char * JS Get Functi onNanme(JSFunction *fun);

JS_Get Funct i onNane retrieves the function name associated with a function
pointer, f un. The return value is either the name of a function, or the string
“anonymous”, which indicates that the function was not assigned a name when
created.

The pointer returned by this function is valid only as long as the specified
function, f un, is in existence.

JSFUN_BOUND_METHOD, JSFUN_GLOBAL PARENT, JS ValueToFunction,
JS_NewFunction, JS_GetFunctionObiject, JS_DefineFunctions,
JS_DefineFunction, JS_CompileFunction, JS_CompileUCFunction,
JS_DecompileFunction, JS_DecompileFunctionBody, JS_CallFunction,
JS_CallFunctionName, JS_CallFunctionValue, JS_SetBranchCallback

JS DefineFunctions

Syntax

Function. Creates one or more functions for a JS object.

JSBool JS DefineFunctions(JSCont ext *cx, JSOhject *obj,

Chapter 2, JavaScript API Reference 135

Function Definitions

JSFuncti onSpec *fs);

Argument Type Description

CX JSCont ext * Pointer to a JS context from which to derive run time information.

obj JShj ect * Obiject for which to define functions.

fs JSFuncti onSpec * A null-terminated array of function specifications. Each element of the

array defines an individual function, its name, the built-in native C call it
wraps, the number of arguments it takes, and its attribute flag.

Description JS_Def i neFunct i ons creates one or more functions and makes them
properties (methods) of a specified object, obj .

fs is a pointer to the first element of an array of JSFuncti onSpec. Each array
element defines a single function: its name, the native C call wrapped by the
function, the number of arguments passed to the function, and its attribute
flags. The last element of the array must contain zero values.

JS Defi neFuncti ons creates one function for each non-zero element in the
array.

JS_Defi neFuncti ons always returns JS_TRUE, indicating it has created all
functions specified in the array.

Note To define only a single function for an object, call JS_Def i neFunct i on.

See also JS_DefineObiject, JS_DefineConstDoubles, JS_DefineProperties,
JS_DefineProperty, JS_DefinePropertyWithTinyld, JS_DefineElement,
JS_ValueToFunction, JS_NewFunction, JS_GetFunctionObject,
JS_GetFunctionName, JS_DefineFunction, JS_CompileFunction,
JS_CompileUCFunction, JS_DecompileFunction, JS_DecompileFunctionBody,
JS_CallFunction, JS_CallFunctionName, JS_CallFunctionValue,
JS_SetBranchCallback

JS DefineFunction

Function. Creates a function and assigns it as a property to a specified JS object.

Syntax JSFunction * JS Defi neFunction(JSContext *cx, JSChject *obj,

136 JavaScript C Engine API Reference

Function Definitions

const char *name, JSNative call, uintN nargs, uintN flags);

Argument Type Description

cX JSCont ext * Pointer to a JS context from which to derive run time information.

obj JShj ect * Obiject for which to define a function as a property (method).

name const char * Name to assign to the function.

call JSNat i ve Indicates the built-in, native C call wrapped by this function.

nar gs ui nt N Number of arguments that are passed to the function when it is called.

fl ags uintN Function attributes.

Description JS_Defi neFuncti on defines a single function and assigns it as a property
(method) to a specified object, obj .
nane is the name to assign to the function in the object. cal | is a built-in,
native C call that is wrapped by your function. nar gs indicates the number of
arguments the function expects to receive. JS uses this information to allocate
storage space for each argument.
f1 ags lists the attributes to apply to the function. Currently documented
attributes, JSFUN_BOUND_METHOD and JSFUN_GLOBAL_PARENT, are deprecated
and should no longer be used. They continue to be supported only for existing
applications that already depend on them.
If it succesfully creates the property, JS Defi neFuncti on returns a pointer to
the function. Otherwise it returns NULL.
See also JS_DefineObiject, JS_DefineConstDoubles, JS_DefineProperties,

JS_DefineProperty, JS_DefinePropertyWithTinyld, JS_DefineElement,
JSFUN_BOUND_METHOD, JSFUN_GLOBAL PARENT, JS ValueToFunction,
JS_NewFunction, JS_GetFunctionObiject, JS_DefineFunctions,
JS_CompileFunction, JS_DecompileFunction, JS_DecompileFunctionBody,
JS_CallFunction, JS_CallFunctionName, JS_CallFunctionValue,
JS_SetBranchCallback

JS_CloneFunctionObject

Syntax

Function. Creates a new function object from an existing function structure.

JSOhj ect * JS O oneFuncti onObj ect (JSCont ext *cx,
JSCbj ect *funobj, JSObject *parent);

Chapter 2, JavaScript API Reference 137

Function Definitions

Description JS_C oneFuncti onObj ect creates a new function object. The new object
shares an underlying function structure with f unobj . f unobj becomes the
prototype for the newly cloned object, which means that its argument
properties are not copied. The cloned object has par ent as its parent object.

On success, JS_d oneFunct i onObj ect returns a pointer to the newly created
object. On failure, it returns NULL.

See also JS_GetFunctionObject

JS_CompileScript

Function. Compiles a script for execution.

Syntax JSScript * JS Conpil eScript(JSContext *cx, JSCbject *obj,
const char *bytes, size_t length, const char *fil enamne,
uintN |i neno);

Argument Type Description

cX JSCont ext * Pointer to a JS context from which to derive run time information.
obj JShj ect * Object with which the script is associated.

byt es const char * String containing the script to compile.

| ength size_t Size, in bytes, of the script to compile.

filename const char * Name of file or URL containing the script. Used to report filename or URL in
error messages.

I'i neno ui nt N Line number. Used to report the offending line in the file or URL if an error
occurs.

Description JS_Conpi | eScri pt compiles a script, byt es, for execution. The script is
associated with a JS object. byt es is the string containing the text of the script.
I engt h indicates the size of the text version of the script in bytes.

Note To compile a script using a Unicode character set, call JS_Conpi | eUCScri pt
instead of this function.

fil enane is the name of the file (or URL) containing the script. This
information in included in error messages if an eror occurs during compilation.
Similarly, I i neno is used to report the line number of the script or file where an
error occurred during compilation.

138 JavaScript C Engine API Reference

Function Definitions

If a script compiles successfully, JS_Conpi | eScri pt returns a pointer to the
compiled script. Otherwise JS_Conpi | eScri pt returns NULL, and reports an
error.

Note To compile a script from an external file source rather than passing the actual
script as an argument, use JS_Conpi | eFi | e instead of JS_Conpi | eScri pt.

See also JS_CompileFile, JS_CompileUCScript, JS_DestroyScript, JS_DecompileScript,
JS_ExecuteScript, JS_EvaluateScript

JS_CompileScriptForPrincipals

Function. Compiles a security-enabled script for execution.

Syntax JSScript * JS Conpil eScri pt ForPrinci pal s(JSCont ext *cx,
JSObj ect *obj, JSPrincipals *principals, const char *bytes,
size_t length, const char *filename, uintN lineno);

Argument Type Description

CX JSCont ext * Pointer to a JS context from which to derive run time information.

obj JSOhj ect * Object with which the script is associated.

principals JSPrincipals * Pointer to the structure holding the security information for this script.
byt es const char * String containing the script to compile.

I ength size_t Size, in bytes, of the script to compile.

fil ename const char * Name of file or URL containing the script. Used to report filename or URL
in error messages.

i neno uintN Line number. Used to report the offending line in the file or URL if an
error occurs.

Description JS_Conpi | eScri pt For Pri nci pal s compiles a security-enabled script, byt es,
for execution. The script is associated with a JS object.

princi pal s is a pointer to the JSPri nci pal s structure that contains the
security information to associate with this script.

byt es is the string containing the text of the script. | engt h indicates the size of
the text version of the script in bytes.

Note To compile a secure script using a Unicode character set, call
JS _Conpi | eUCScri pt For Pri nci pal s instead of this function.

Chapter 2, JavaScript API Reference 139

Function Definitions

fil enanme is the name of the file (or URL) containing the script. This
information in included in error messages if an eror occurs during compilation.
Similarly, | i neno is used to report the line number of the script or file where an
error occurred during compilation.

If a script compiles successfully, JS_Conpi | eScri pt For Pri nci pal s returns a
pointer to the compiled script. Otherwise JS_Conpi | eScri pt For Pri nci pal s
returns NULL, and reports an error.

See also JS_CompileFile, JS_CompileUCScript, JS_CompileUCScriptForPrincipals,
JS_DestroyScript, JS_DecompileScript, JS_ExecuteScript, JS_EvaluateScript,
JS_EvaluateScriptForPrincipals

JS_CompileUCScript

Function. Compiles a Unicode-encoded script for execution.

Syntax JSScript * JS _Conpil eUCScri pt (JSCont ext *cx, JSOoject *obj,
const jschar *chars, size_t length, const char *filenane,
uintN |ineno);

Argument Type Description

CX JSCont ext * Pointer to a JS context from which to derive run time information.
obj JShj ect * Object with which the script is associated.

chars const jschar * String containing the script to compile.

I ength size_t Number of Unicode characters in the script to compile.

filenanme const char * Name of file or URL containing the script. Used to report filename or URL in
error messages.

I'i neno ui nt N Line number. Used to report the offending line in the file or URL if an error
occurs.

Description JS_Conpi | eUCScri pt compiles a script using a Unicode character set, chars,
for execution. The script is associated with a JS object. char s is the Unicode
string containing the text of the script. | engt h indicates the size of the script in
characters.

fil enane is the name of the file (or URL) containing the script. This
information in included in error messages if an eror occurs during compilation.
Similarly, I i neno is used to report the line number of the script or file where an
error occurred during compilation.

140 JavaScript C Engine API Reference

Note

See also

Function Definitions

If a script compiles successfully, JS_Conpi | eUCScri pt returns a pointer to the
compiled script. Otherwise JS_UCConpi | eScri pt returns NULL, and reports an
error.

To compile a script from an external file source rather than passing the actual
script as an argument, use JS_Conpi | eFi | e instead of JS_Conpi | eScri pt.

JS_CompileScript, JS_CompileFile, JS_DestroyScript, JS_DecompileScript,
JS_ExecuteScript, JS_EvaluateScript

JS_ CompileUCScriptForPrincipals

Function. Compiles a security-enabled, Unicode-encoded script for execution.

Syntax JSScript * JS Conpil eUCScri pt For Pri nci pal s(JSCont ext *cx,
JSObj ect *obj,JSPrincipals *principals, const jschar *chars,
size_t length, const char *filename, uintN lineno);
Argument Type Description
cX JSCont ext * Pointer to a JS context from which to derive run time information.
obj JShj ect * Obiject with which the script is associated.
principals JSPrincipals * Pointer to the structure holding the security information for this script.
chars const jschar * String containing the script to compile.
I ength size_t Number of Unicode characters in the script to compile.
fil enane const char * Name of file or URL containing the script. Used to report filename or URL in
error messages.
l'i neno uintN Line number. Used to report the offending line in the file or URL if an error
occeurs.
Description JS_Conpi | eUCScri pt For Pri nci pal s compiles a security-enabled script using

a Unicode character set, char s, for execution. The script is associated with a JS
object.

princi pal s is a pointer to the JSPri nci pal s structure that contains the
security information to associate with this script.

char s is the Unicode string containing the text of the script. | engt h indicates
the size of the script in characters.

Chapter 2, JavaScript API Reference 141

Function Definitions

fil enanme is the name of the file (or URL) containing the script. This
information in messages if an eror occurs during compilation. Similarly, | i neno
is used to report the line number of the script or file where an error occurred
during compilation.

If a script compiles successfully, 3JS_Conpi | eUCScri pt For Pri nci pal s returns
a pointer to the compiled script. Otherwise
JS_Conpi | eUCScri pt For Pri nci pal s returns NULL, and reports an error.

See also JS_CompileScript, JS_CompileScriptForPrincipals, JS_CompileUCScript,
JS_CompileFile, JS_DestroyScript, JS_DecompileScript, JS_ExecuteScript,
JS_EvaluateScript, JS_EvaluateScriptForPrincipals

JS_CompileFile

Function. Compiles a script stored in an external file.

Syntax JSScript * JS _Conpil eFil e(JSCont ext *cx, JSOhject *obj,
const char *fil enane);

Argument Type Description
cX JSCont ext * Pointer to a JS context from which to derive run time information.
obj JShj ect * Object with which the script is associated.

filename const char * Name of file or URL containing the script to compile.
Description JS_Conpi | eFi | e compiles the text of script in an external file location for
execution by the JS engine.

Note JS_Conpi |l eFi | e is only available if you compile the JS engine with the
JSFI LE macro defined.

fil ename is the name of the file (or URL) containing the script to compile.

If a script compiles successfully, JS_Conpi | eFi | e returns a pointer to the
compiled script. Otherwise JS_Conpi | eFi | e returns NULL.

Note To pass a script as an argument to a function rather than having to specify a file
location, use JS_Conpi | eScri pt instead of JS_Conpi | eFi | e.

See also JS_CompileScript, JS_DestroyScript, JS_DecompileScript, JS_ExecuteScript,
JS_EvaluateScript

142 JavaScript C Engine API Reference

Function Definitions

JS_NewsScriptObject

Function. Creates a new object and associates a script with it.
Syntax JSObj ect * JS_NewScri pt Obj ect (JSCont ext *cx, JSScript *script);

Description JS_NewScri pt Obj ect creates a new object, assigns scri pt to the object, and
sets the script’s object to the newly created object. Object creation occurs in a
specified context, cx.

On success, JS_NewScri pt Obj ect returns a pointer to the newly created
object. On failure, it returns NULL.

See also JS_CompileScript, JS_DestroyScript, JS_DecompileScript, JS_ExecuteScript,
JS_EvaluateScript

JS_DestroyScript

Function. Frees a compiled script when no longer needed.

Syntax void) JS DestroyScript(JSContext *cx, JSScript *script);
Argument Type Description
CX JSCont ext * Pointer to a JS context from which to derive run time information.
scri pt JSScript * Compiled script to destroy.

Description JS DestroyScri pt destroys the compiled script object, scri pt, thereby
freeing the space allocated to it for other purposes. Generally, after you
compile a script you do not want to call JS Dest royScri pt until you no
longer need to use the script. Othewise you will have to recompile the script to
use it again.

See also JS_CompileScript, JS_CompileFile, JS_DecompileScript, JS_ExecuteScript,
JS_EvaluateScript

JS_CompileFunction

Function. Creates a JS function from a text string.

Syntax JSFunction * JS Conpil eFuncti on(JSContext *cx, JSObject *obj,

Chapter 2, JavaScript API Reference 143

Function Definitions

const char *name, uintN nargs, const char **argnanes,
const char *bytes, size_t length, const char *fil enane,
uintN |ineno);

Argument Type Description

CX JSCont ext * Pointer to a JS context from which to derive run time information.

obj JShj ect * Object with which the function is associated.

nane const char * Name to assign the newly compiled function.

nar gs uintN Number of arguments to pass to the function.

argnanes const char ** Names to assign to the arguments passed to the function.

byt es const char * String containing the function to compile.

| ength size_t Size, in bytes, of the function to compile.

filename const char * Name of file or URL containing the function. Used to report filename or URL in
error messages.

li neno uintN Line number. Used to report the offending line in the file or URL if an error
occurs.

Description JS_Conpi | eFunct i on compiles a function from a text string, byt es, and

See also

associated it with a JS object, obj .

nane is the name to assign to the newly created function. nar gs is the number

of arguments the function takes, and ar gnames is a pointer to an array of

names to assign each argument. The number of argument names should match

the number of arguments specified in nar gs.

byt es is the string containing the text of the function. | engt h indicates the size

of the text version of the function in bytes.

fil ename is the name of the file (or URL) containing the function. This

information in messages if an eror occurs during compilation. Similarly, 1 i neno
is used to report the line number of the function or file where an error occurred

during compilation.

If a function compiles successfully, JS_Conpi | eFuncti on returns a pointer to

the function. Otherwise JS_Conpi | eFunct i on returns NULL.

JS_NewFunction, JS_GetFunctionObiject, JS_DefineFunctions,
JS_DefineFunction, JS_DecompileFunction, JS_DecompileFunctionBody,
JS_CallFunction, JS_CallFunctionName, JS_CallFunctionValue,
JS_SetBranchCallback

144 JavaScript C Engine API Reference

JSFUN_BOUND_METHOD, JSFUN_GLOBAL_PARENT, JS_ValueToFunction,

Function Definitions

JS_CompileFunctionForPrincipals

Function. Creates a security-enabled JS function from a text string.

Syntax JSFunction * JS_Conpi |l eFuncti onFor Pri nci pal s(JSCont ext *cx,
JSObj ect *obj, JSPrincipals *principals, const char *nane,
ui nt N nargs, const char **argnanes, const char *hytes,
size_t length, const char *filenane, uintN |ineno);

Argument Type Description

CX JSCont ext * Pointer to a JS context from which to derive run time information.

obj JSObj ect * Object with which the function is associated.

principals JSPrincipals * Pointer to the structure holding the security information for this function.
name const char * Name to assign the newly compiled function.

nar gs uintN Number of arguments to pass to the function.

ar gnanes const char ** Names to assign to the arguments passed to the function.

byt es const char * String containing the function to compile.

I ength size_t Size, in bytes, of the function to compile.

fil ename const char * Name of file or URL containing the function. Used to report filename or
URL in error messages.

li neno uintN Line number. Used to report the offending line in the file or URL if an
error occurs.

Description JS_Conpi | eFuncti onFor Pri nci pal s compiles a security-enabled function
from a text string, byt es, and associated it with a JS object, obj .

princi pal s is a pointer to the JSPri nci pal s structure that contains the
security information to associate with this function.

nane is the name to assign to the newly created function. nar gs is the number
of arguments the function takes, and ar gnanes is a pointer to an array of
names to assign each argument. The number of argument names should match
the number of arguments specified in nar gs.

byt es is the string containing the text of the function. | engt h indicates the size
of the text version of the function in bytes.

fil enane is the name of the file (or URL) containing the function. This
information in messages if an eror occurs during compilation. Similarly, 1 i neno
is used to report the line number of the function or file where an error occurred
during compilation.

Chapter 2, JavaScript API Reference 145

Function Definitions

See also

If a function compiles successfully, JS_Conpi | eFuncti onFor Pri nci pal s
returns a pointer to the function. Otherwise
JS _Conpi | eFuncti onFor Pri nci pal s returns NULL.

JSFUN_BOUND_METHOD, JSFUN_GLOBAL_PARENT, JS_ValueToFunction,
JS_NewFunction, JS_GetFunctionObiject, JS_DefineFunctions,
JS_DefineFunction, JS_CompileFunction, JS_CompileUCFunction,
JS_CompileUCFunctionForPrincipals, JS_DecompileFunction,
JS_DecompileFunctionBody, JS_CallFunction, JS_CallFunctionName,
JS_CallFunctionValue

JS_CompileUCFunction

Syntax

Function. Creates a JS function from a Unicode-encoded character string.

JSFunction * JS Compi | eUCFuncti on(JSCont ext *cx, JSCbject *obj,
const char *nanme, uintN nargs, const char **argnanes,
const jschar *chars, size_t length, const char *filenane,
uintN |i neno);

Argument Type Description

cX JSCont ext * Pointer to a JS context from which to derive run time information.
obj JShj ect * Object with which the function is associated.

name const char * Name to assign the newly compiled function.

nar gs uintN

Number of arguments to pass to the function.

argnanes const char ** Names to assign to the arguments passed to the function.

chars const jschar * Unicode string containing the function to compile.

I ength size_t

Size, in Unicode characters, of the function to compile.

filename const char * Name of file or URL containing the function. Used to report filename or URL

| i neno uintN

Description

in error messages.

Line number. Used to report the offending line in the file or URL if an error
occurs.

JS_Conpi | eUCFunct i on compiles a function from a Unicode-encoded
character string, char s, and associated it with a JS object, obj .

nane is the name to assign to the newly created function. nar gs is the number
of arguments the function takes, and ar gnanes is a pointer to an array of
names to assign each argument. The number of argument names should match
the number of arguments specified in nar gs.

146 JavaScript C Engine API Reference

Function Definitions

char s is the Unicode-encoded string containing the function. | engt h indicates
the size of the function in Unicode characters.

fil enane is the name of the file (or URL) containing the function. This
information in messages if an eror occurs during compilation. Similarly, 1 i neno
is used to report the line number of the function or file where an error occurred
during compilation.

If a function compiles successfully, JS_Conpi | eUCFunct i on returns a pointer
to the function. Otherwise JS_Conpi | eUCFunct i on returns NULL.

See also JS_ValueToFunction, JS_NewFunction, JS_GetFunctionObject,
JS_DefineFunctions, JS_DefineFunction, JS_CompileFunction,
JS_DecompileFunction, JS_DecompileFunctionBody, JS_CallFunction,
JS_CallFunctionName, JS_CallFunctionValue, JS_SetBranchCallback

JS_CompileUCFunctionForPrincipals

Function. Creates a JS function with security informtion from a Unicode-
encoded character string.

Syntax JSFunction * JS Conpi |l eUCFuncti onFor Pri nci pal s(JSCont ext *cx,
JSObj ect *obj, JSPrincipals *principals, const char *nane,
ui nt N nargs, const char **argnanes, const jschar *chars,
size_t length, const char *filename, uintN lineno);

Argument Type Description

cX JSCont ext * Pointer to a JS context from which to derive run time information.

obj JSOhj ect * Object with which the function is associated.

principals JSPrincipals * Pointer to the structure holding the security information for this function.
nane const char * Name to assign the newly compiled function.

nar gs uint N Number of arguments to pass to the function.

ar gnanes const char ** Names to assign to the arguments passed to the function.

chars const jschar * Unicode string containing the function to compile.

| ength size_t Size, in Unicode characters, of the function to compile.

fil ename const char * Name of file or URL containing the function. Used to report filename or
URL in error messages.

i neno uintN Line number. Used to report the offending line in the file or URL if an
error occurs.

Chapter 2, JavaScript API Reference 147

Function Definitions

Description JS_Conpi | eUCFunct i onFor Pri nci pal s compiles a security-enabled function
from a Unicode-encoded character string, char s, and associated it with a JS
object, obj .

princi pal s is a pointer to the JSPri nci pal s structure that contains the
security information to associate with this function.

nane is the name to assign to the newly created function. nar gs is the number
of arguments the function takes, and ar gnanes is a pointer to an array of
names to assign each argument. The number of argument names should match
the number of arguments specified in nar gs.

char s is the Unicode-encoded string containing the function. | engt h indicates
the size of the function in Unicode characters.

fil enane is the name of the file (or URL) containing the function. This
information is included in messages if an eror occurs during compilation.
Similarly, I i neno is used to report the line number of the function or file where
an error occurred during compilation.

If a function compiles successfully, JS_Conpi | eUCFunct i onFor Pri nci pal s
returns a pointer to the function. Otherwise
JS Conpi | eUCFuncti onFor Pri nci pal s returns NULL.

See also JS_ValueToFunction, JS_NewFunction, JS_GetFunctionObiject,
JS_DefineFunctions, JS_DefineFunction, JS_CompileUCFunction,
JS_DecompileFunction, JS_DecompileFunctionBody, JS_CallFunction,
JS_CallFunctionName, JS_CallFunctionValue

JS_DecompileScript

Function. Creates the source code of a script from a script’s compiled form.
Syntax JSString * JS Deconpil eScri pt(JSContext *cx, JSScript *script,
const char *name, uintN indent);
Argument Type Description
cX JSCont ext * Pointer to a JS context.
scri pt JSScript * Script to decompile.
name const char * Name to assign to the decompiled script.
i ndent uintN Number of spaces to use for indented code.

148 JavaScript C Engine API Reference

Description

See also

Function Definitions

JS_Deconpi | eScri pt creates the source code version of a script from a script’s
compiled form, scri pt. name is the name you assign to the text version of the
script; it is used only for debugging the source code version produced by this
function.

If successful, JS_Deconpi | eScri pt returns a string containing the source code
of the script. Otherwise, it returns NULL. The source code generated by this
function is accurate but lacks function declarations. In order to make it suitable
for recompiling, you must edit the code to add the function declarations, or call
JS_Deconpi | eFuncti on on a compiled version of each function to generate
the function declarations.

JS_CompileScript, JS_CompileFile, JS_DecompileFunction, JS_DestroyScript,
JS_ExecuteScript, JS_EvaluateScript

JS_DecompileFunction

Function. Generates the complete source code of a function declaration from a
compiled function.

Syntax JSString * JS Deconpil eFunction(JSContext *cx, JSFunction *fun,
uint N i ndent);
Argument Type Description
cX JSCont ext * Pointer to a JS context from which to derive run time information.
fun JSFunction * Function to decompile.
i ndent ui nt N Number of spaces to use for indented code.
Description JS_Deconpi | eFuncti on generates the complete source code of a function

declaration from a function’s compiled form, f un.

If successful, JS_Deconpi | eFunct i on returns a string containing the text of the
function. Otherwise, it returns NULL.

If you decompile a function that does not make a native C call, then the text
created by JS Deconpi | eFuncti on is a complete function declaration suitable
for re-parsing. If you decompile a function that makes a native C call, the body
of the function contains the text “[native code]” and cannot be re-parsed.

Chapter 2, JavaScript API Reference 149

Function Definitions

See also JS_ValueToFunction, JS_NewFunction, JS_GetFunctionObject,
JS_DefineFunctions, JS_DefineFunction, JS_CompileFunction,
JS_DecompileFunctionBody, JS_CallFunction, JS_CallFunctionName,
JS_CallFunctionValue, JS_SetBranchCallback

JS_DecompileFunctionBody

Function. Generates the source code representing the body of a function,
minus the f uncti on keyword, name, parameters, and braces.

Syntax JSString * JS _Deconpil eFuncti onBody(JSCont ext *cx,
JSFunction *fun, uintNindent);

Argument Type Description

CX JSCont ext * Pointer to a JS context from which to derive run time information.
fun JSFunction * Function to decompile.

i ndent uintN Number of spaces to use for indented code.

Description JS_Deconpi | eFuncti onBody generates the source code of a function’s body,
minus the f unct i on keyword, name, parameters, and braces, from a function’s
compiled form, f un.

If successful, JS_Deconpi | eFunct i onBody returns a string containing the
source code of the function body. Otherwise, it returns NULL.

The source code generated by this function is accurate but unadorned and is
not suitable for recompilation without providing the function’s declaration. If
you decompile a function that makes a native C call, the body of the function
only contains the text “[native code]”.

Note To decompile a complete function, including its body and declaration, call
JS Deconpi | eFuncti on instead of JS_Deconpi | eFunct i onBody.

See also JS_ValueToFunction, JS_NewFunction, JS_GetFunctionObiject,
JS_DefineFunctions, JS_DefineFunction, JS_CompileFunction,
JS_DecompileFunction, JS_CallFunction, JS_CallFunctionName,
JS_CallFunctionValue, JS_SetBranchCallback

150 JavaScript C Engine API Reference

Function Definitions

JS_ExecuteScript

Function. Executes a compiled script.

Syntax JSBool JS ExecuteScri pt(JSContext *cx, JSCbject *obj,
JSScript *script, jsval *rval);

Argument Type Description

CcX JSCont ext * JS context in which the script executes.

obj JSOhj ect * Object with which the script is associated.

scri pt JSScript * Previously compiled script to execute.

rval jsval * Pointer to the value from the last executed expression statement processed in the
script.

Description JS_Execut eScri pt executes a previously compiled script, script. On
successful completion, rval is a pointer to a variable that holds the value from
the last executed expression statement processed in the script.

If a script executes successfully, JS_Execut eScri pt returns JS_TRUE.
Otherwise it returns JS_FALSE. On failure, your application should assume that
rval is undefined.

Note To execute an uncompiled script, compile it with JS_Conpi | eScri pt, and
then call JS_Execut eScri pt, or call JS_Eval uat eScri pt to both compile and
execute the script.

See also JS_CompileScript, JS_CompileFile, JS_DestroyScript, JS_DecompileScript,
JS_EvaluateScript

JS_EvaluateScript

Function. Compiles and executes a script.

Syntax JSBool JS Eval uateScri pt (JSContext *cx, JSObject *obj,
const char *bytes, uintN length, const char *fil enaneg,

Chapter 2, JavaScript API Reference 151

Function Definitions

uintN lineno, jsval *rval);

Argument Type Description

CcX JSCont ext * JS context in which the script compiles and executes.
obj JShj ect * Object with which the script is associated.

byt es const char * String containing the script to compile and execute.

| ength size_t Size, in bytes, of the script to compile and execute.

filename const char * Name of file or URL containing the script. Used to report filename or URL in
error messages.

l'i neno ui nt N Line number. Used to report the offending line in the file or URL if an error
occurs.

rval jsval * Pointer to the value from the last executed expression statement processed in
the script.

Description JS_Eval uateScri pt compiles and executes a script associated with a JS
object, obj . On successful completion, r val is a pointer to a variable that holds
the value from the last executed expression statement processed in the script.

byt es is the string containing the text of the script. | engt h indicates the size of
the text version of the script in bytes.

fil enane is the name of the file (or URL) containing the script. This
information in messages if an eror occurs during compilation. Similarly, | i neno
is used to report the line number of the script or file where an error occurred
during compilation.

If a script compiles and executes successfully, JS_Eval uat eScri pt returns
JS_TRUE. Otherwise it returns JS_FALSE. On failure, your application should
assume that rval is undefined.

See also JS_CompileScript, JS_CompileFile, JS_DestroyScript, JS_DecompileScript,
JS_ExecuteScript, JS_EvaluateScriptForPrincipals

JS_EvaluateUCScript

Function. Compiles and executes a Unicode-encoded script.

Syntax JSBool JS Eval uat eUCScri pt (JSContext *cx, JSCbject *obj,
const jschar *chars, uintN length, const char *fil enane,

152 JavaScript C Engine API Reference

Function Definitions

uintN lineno, jsval *rval);

Argument Type Description

cX JSCont ext * JS context in which the script compiles and executes.

obj JShj ect * Object with which the script is associated.

chars const jschar * Unicode character array ontaining the script to compile and execute.
| ength uintN Size, in Unicode characters, of the script to compile and execute.

filename const char * Name of file or URL containing the script. Used to report filename or URL in
error messages.

I'i neno ui nt N Line number. Used to report the offending line in the file or URL if an error
occurs.

rval jsval * Pointer to the value from the last executed expression statement processed
in the script.

Description JS_Eval uat eUCScri pt compiles and executes a script associated with a JS
object, obj . On successful completion, r val is a pointer to a variable that holds
the value from the last executed expression statement processed in the script.

char s is the Unicode character array containing the text of the script. | engt h
indicates the size of the text version of the script in Unicode characters.

fil enane is the name of the file (or URL) containing the script. This
information is included in messages if an eror occurs during compilation.
Similarly, I i neno is used to report the line number of the script or file where an
error occurred during compilation.

If a script compiles and executes successfully, JS_Eval uat eUCScri pt returns
JS_TRUE. Otherwise it returns JS_FALSE. On failure, your application should
assume that rval is undefined.

See also JS_CompileScript, JS_CompileFile, JS_DestroyScript, JS_DecompileScript,
JS_ExecuteScript, JS_EvaluateScript, JS_EvaluateScriptForPrincipals,
JS_EvaluateUCScriptForPrincipals

JS_EvaluateScriptForPrincipals

Function. Compiles and executes a security-enabled script.
Syntax JSBool JS Eval uat eScri pt For Pri nci pal s(JSCont ext *cx,

JSObj ect *obj, JSPrincipals *principals, const char *bytes,
uintN | ength, const char *filenane, uintN |ineno,

Chapter 2, JavaScript API Reference 153

Function Definitions

jsval *rval);

Argument Type Description

CcX JSCont ext * JS context in which the script compiles and executes.

obj JSOhj ect * Object with which the script is associated.

principals JSPrincipals * Pointer to the structure holding the security information for this script.
byt es const char * String containing the script to compile and execute.

| engt h size_t Size, in bytes, of the script to compile and execute.

fil ename const char * Name of file or URL containing the script. Used to report filename or URL
in error messages.

li neno uintN Line number. Used to report the offending line in the file or URL if an
error occurs.

rval jsval * Pointer to the value from the last executed expression statement
processed in the script.

Description JS_Eval uat eScri pt For Pri nci pal s compiles and executes a script associated
with a JS object, obj . On successful completion, rval is a pointer to a variable
that holds the value from the last executed expression statement processed in
the script.

princi pal s is a pointer to the JSPri nci pal s structure that contains the
security information to associate with this script.

byt es is the string containing the text of the script. | engt h indicates the size of
the text version of the script in bytes.

fil enane is the name of the file (or URL) containing the script. This
information in messages if an eror occurs during compilation. Similarly, | i neno
is used to report the line number of the script or file where an error occurred
during compilation.

If a secure script compiles and executes successfully,
JS Eval uat eScri pt For Pri nci pal s returns JS_TRUE. Otherwise it returns
JS_FALSE. On failure, your application should assume that r val is undefined.

See also JS_CompileScript, JS_CompileFile, JS_DestroyScript, JS_DecompileScript,
JS_ExecuteScript, JS_EvaluateScript, JS_EvaluateUCScript,
JS_EvaluateUCScriptForPrincipals

154 JavaScript C Engine API Reference

Function Definitions

JS_EvaluateUCScriptForPrincipals

Function. Compiles and executes a security-enabled,Unicode-encoded
character script.

Syntax JSBool JS_Eval uat eScri pt UCFor Pri nci pal s(JSCont ext *cx,
JSObj ect *obj, JSPrincipals *principals, const jschar *chars,
uintN | ength, const char *filenane, uintN |ineno,
jsval *rval);

Argument Type Description

CcX JSCont ext * JS context in which the script compiles and executes.

obj JSObj ect * Object with which the script is associated.

principals JSPrincipals * Pointer to the structure holding the security information for this script.

chars const jschar * Unicode-encoded character array containing the script to compile and
execute.

| engt h ui nt N Size, in Unicode characters, of the script to compile and execute.

fil ename const char * Name of file or URL containing the script. Used to report filename or URL
in error messages.

I'i neno uint N Line number. Used to report the offending line in the file or URL if an
error occurs.

rval jsval * Pointer to the value from the last executed expression statement
processed in the script.

Description JS_Eval uat eUCScri pt For Pri nci pal s compiles and executes a Unicode-
encoded script associated with a JS object, obj . On successful completion,
rval is a pointer to a variable that holds the value from the last executed
expression statement processed in the script.

princi pal s is a pointer to the JSPri nci pal s structure that contains the
security information to associate with this script.

char s is the Unicode-encoded character array containing the text of the script.
| engt h indicates the number of characters in the text version of the script.

fil ename is the name of the file (or URL) containing the script. This
information is included in messages if an eror occurs during compilation.
Similarly, | i neno is used to report the line number of the script or file where an
error occurred during compilation.

Chapter 2, JavaScript API Reference 155

Function Definitions

If a secure script compiles and executes successfully,
JS Eval uat eUCScri pt For Pri nci pal s returns JS_TRUE. Otherwise it returns
JS_FALSE. On failure, your application should assume that r val is undefined.

See also JS_CompileScript, JS_CompileFile, JS_DestroyScript, JS_DecompileScript,
JS_ExecuteScript, JS_EvaluateScript, JS_EvaluateUCScript,
JS_EvaluateScriptForPrincipals

JS_CallFunction

Function. Deprecated. Calls a specified function.

Syntax JSBool JS Call Function(JSContext *cx, JSCbject *obj,
JSFunction *fun, uintN argc, jsval *argv, jsval *rval);

Argument Type Description

cX JSCont ext * Pointer to a JS context from which to derive run time information.

obj JShj ect * The “current” object on which the function operates; the object specified here
is “this” when the function executes.

*fun JSFunction * Pointer to the function to call.

argc uintN Number of arguments you are passing to the function.

ar gv jsval * Pointer to the array of argument values to pass to the function.

rval jsval * Pointer to a variable to hold the return value from the function call.

Description JS_Cal | Functi on calls a specified function, f un, on an object, obj . In terns of
function execution, the object is treated as this. This call is deprecated. It
continues to be supported for existing applications that currently use it, but
future versions of the JS engine may no longer support it.

Note To call a method on an object, use JS_Cal | Funct i onNane.

In ar gc, indicate the number of arguments passed to the function. In ar gv,
pass a pointer to the actual argument values to use. There should be one value
for each argument you pass to the function; the number of arguments you pass
may be different from the number of arguments defined for the function.by the
function.

rval is a pointer to a variable that will hold the function’s return value, if any,
on successful function execution.

156 JavaScript C Engine API Reference

Function Definitions

If the called function executes successfully, JS_Cal | Functi on returns
JS_TRUE. Otherwise it returns JS_FALSE, and r val is undefined.

See also JS_ValueToFunction, JS_NewFunction, JS_GetFunctionObject,
JS_DefineFunctions, JS_DefineFunction, JS_CompileFunction,
JS_DecompileFunction, JS_DecompileFunctionBody, JS_CallFunctionName,
JS_CallFunctionValue, JS_SetBranchCallback

JS_CallFunctionName

Function. Deprecated. Calls a function-valued property belonging to an object.

Syntax JSBool JS Cal |l Functi onName(JSContext *cx, JSCbject *obj,
const char *nane, uintN argc, jsval *argv, jsval *rval);

Argument Type Description

cX JSCont ext * Pointer to a JS context from which to derive run time information.
obj JShj ect * The object containing the method to execute.

name const char * The name of the function to execute.

argc uintN Number of arguments you are passing to the function.

ar gv jsval * Pointer to the array of argument values to pass to the function.
rval jsval * Pointer to a variable to hold the return value from the function call.

Description JS_Cal | Funct i onNanme executes a function-valued property, name, belonging
to a specified JS object, obj . This call is deprecated. It continues to be
supported for existing applications that currently use it, but future versions of
the JS engine may no longer support it.

Note To call a function stored in a j sval , use JS_Cal | Functi onVal ue.

In ar gc, indicate the number of arguments passed to the function. In ar gv,
pass a pointer to the actual argument values to use. There should be one value
for each argument you pass to the function; the number of arguments you pass
may be different from the number of arguments defined for the function.by the
function.

rval is a pointer to a variable that will hold the function’s return value, if any,
on successful function execution.

If the called function executes successfully, JS_Cal | Functi onName returns
JS_TRUE. Otherwise it returns JS_FALSE, and r val is undefined.

Chapter 2, JavaScript API Reference 157

Function Definitions

See also JS_ValueToFunction, JS_NewFunction, JS_GetFunctionObject,
JS_DefineFunctions, JS_DefineFunction, JS_CompileFunction,
JS_DecompileFunction, JS_DecompileFunctionBody, JS_CallFunction,
JS_CallFunctionValue, JS_SetBranchCallback

JS_CallFunctionValue

Function. Deprecated. Calls a function referenced by a j sval .

Syntax JSBool JS Cal |l Functi onVal ue(JSCont ext *cx, JSCbject *obj,
jsval fval, uintN argc, jsval *argv, jsval *rval);

Argument Type Description

CX JSCont ext * Pointer to a JS context from which to derive run time information.

obj JSCbj ect * The “current” object on which the function operates; the object specified here
is “this” when the function executes.

fval j sval The jsval containing the function to execute.

argc ui nt N Number of arguments you are passing to the function.

ar gv jsval * Pointer to the array of argument values to pass to the function.

rval jsval * Pointer to a variable to hold the return value from the function call.

Description JS_Cal | Functi onVal ue executes a function referenced by a j sval , fval , on
an object, obj . In terns of function execution, the object is treated as this. This
call is deprecated. It continues to be supported for existing applications that
currently use it, but future versions of the JS engine may no longer support it.

In ar gc, indicate the number of arguments passed to the function. In ar gv,
pass a pointer to the actual argument values to use. There should be one value
for each argument you pass to the function; the number of arguments you pass
may be different from the number of arguments defined for the function.by the
function.

rval is a pointer to a variable that will hold the function’s return value, if any,
on successful function execution.

If the called function executes successfully, JS_Cal | Functi onVal ue returns
JS_TRUE. Otherwise it returns JS_FALSE, and r val is undefined.

158 JavaScript C Engine API Reference

Function Definitions

See also JS_ValueToFunction, JS_NewFunction, JS_GetFunctionObiject,
JS_DefineFunctions, JS_DefineFunction, JS_CompileFunction,
JS_DecompileFunction, JS_DecompileFunctionBody, JS_CallFunction,
JS_CallFunctionName, JS_SetBranchCallback

JS_SetBranchCallback

Function. Specifies a callback function that is automatically called when a script
branches backward during execution, when a function returns, and at the end
of the script.

Syntax JSBranchCal | back JS_Set BranchCal | back(JSCont ext *cx,
JSBranchCal | back cb);

Argument Type Description
CX JSCont ext * Pointer to a JS context from which to derive run time information.
ch JSBranchCal | back The object that encapsulates the callback function.

Description JS_Set BranchCal | back specifies a callback function that is automatically
called when a script branches backward during execution, when a function
returns, and at the end of the script. One typical use for a callback is in a client
application to enable a user to abort an operation.

JS_IsRunning

Function. Indicates whether or not a script or function is currently executing in
a given context.

Syntax JSBool JS_| sRunni ng(JSCont ext *cx);

Description JS_I sRunni ng determines if a script or function is currently executing in a
specified context, cx. If a script is executing, JS | sRunni ng returns JS_TRUE.
Otherwise it returns JS_FALSE.

See also JS_Init, JS_Finish, JS_NewContext, JS_DestroyContext, JS_GetRuntime,
JS_Contextlterator,

Chapter 2, JavaScript API Reference 159

Function Definitions

JS_IsConstructing

Syntax

Description

Function. Indicates the current constructor status of a given context.
JSBool JS_IsConstructing(JSContext *cx);

JS I sConst ructing determines whether or not a function constructor is in
action within a given context, cx. If itis, JS_I sConst ruct i ng returns JS_TRUE.
Otherwise it returns JS_FALSE.

JS_NewsString

Function. Allocates a new JS string.

Syntax JSString * JS NewString(JSContext *cx, char *bytes,
size_t length);
Argument Type Description
cX JSCont ext * Pointer to a JS context from which to derive run time information.
byt es char * Pointer to the byte array containing the text for the JS string to create.
| engt h size_t Number of characters in the text string.
Description JS_NewSt ri ng uses the memory starting at byt es and ending at bytes +

See also

| engt h as storage for the JS string it returns. The char array, byt es, must be
allocated on the heap using JS nal | oc. This means that your application is
permitting the JS engine to handle this memory region. Your application should
not free or otherwise manipulate this region of memory.

Using JS_NewsSt ri ng is analogous to assigning char * variables in C, and can
save needless copying of data. If successful, JS_NewsSt ri ng returns a pointer to
the JS string. Otherwise it returns NULL.

JS_GetEmptyStringValue, JS_ValueToString, JS_ConvertValue, JS_NewDouble,
JS_NewObiject, JS_NewArrayObject, JS_NewFunction, JS_NewUCString,
JS_NewstringCopyN, JS_NewUCStringCopyN, JS_NewsStringCopyZ,
JS_NewUCStringCopyZ, JS_InternString, JS_InternUCString, JS_InternUCStringN,
JS_GetStringChars, JS_GetStringBytes, JS_GetStringLength, JS_CompareStrings,
JS_malloc

160 JavaScript C Engine API Reference

Function Definitions

JS_NewUCString

Function. Allocates a new JS Unicode-encoded string.

Syntax JSString * JS_NewUCString(JSContext *cx, jschar *chars,
size_t length);

Argument Type Description
CX JSCont ext * Pointer to a JS context from which to derive run time information.
chars jschar * Pointer to the Unicode-encoded character array containing the text for the JS

string to create.
| ength size_t Number of characters in the text string.

Description JS_NewUCSt ri ng uses the memory starting at char s and ending at chars +
| engt h as storage for the Unicode-encoded JS string it returns. This means that
your application is permitting the JS engine to handle this memory region. Your
application should not free or otherwise manipulate this region of memory.

Using JS_NewUCSt ri ng is analogous to assigning char * variables in C, and
can save needless copying of data. If successful, JS_NewUCSt ri ng returns a
pointer to the JS string. Otherwise it returns NULL.

See also JS_GetEmptyStringValue, JS_ValueToString, JS_ConvertValue, JS_NewDouble,
JS_NewObiject, JS_NewArrayObject, JS_NewFunction, JS_NewsString,
JS_NewsStringCopyN, JS_NewUCStringCopyN, JS_NewsStringCopyZ,
JS_NewUCStringCopyZ, JS_InternString, JS_InternUCString, JS_InternUCStringN,
JS_GetStringChars, JS_GetStringBytes, JS_GetStringLength, JS_CompareStrings,
JS_malloc

JS_NewStringCopyN

Function. Creates a new JS string of a specified size.

Syntax JSString * JS NewStringCopyN(JSContext *cx, const char *s,

size_t n);
Argument Type Description
cX JSCont ext * Pointer to a JS context from which to derive run time information.
s const char * Pointer to the character array containing the text for the JS string to create.
n size_t Maximum number of characters to copy from s into the JS string.

Chapter 2, JavaScript API Reference 161

Function Definitions

Description

See also

JS_NewsSt ri ngCopyN allocates space for a JS string and its underlying storage,
and copies as many characters from a C character array, s, as possible, up to n
bytes, into the new JS string. If the number of bytes in s is greater than the
number of characters specified in n, the new JS string contains a truncated
version of the original string. If the number of characters in s is less than the
number of bytes specified in n, the new JS string is padded with nulls to the
specified length.

You can use JS_NewsSt ri ngCopyN to copy binary data, which may contain
ASCII 0 characters. You can also use this function when you want to copy only
a certain portion of a C string into a JS string.

If the allocation is successful, JS_NewsSt ri ngCopyN returns a pointer to the JS
string. Otherwise it returns NULL.

JS_GetEmptyStringValue, JS_ValueToString, JS_ConvertValue, JS_NewDouble,
JS_NewObiject, JS_NewArrayObject, JS_NewFunction, JS_NewsString,
JS_NewUCString, JS_NewUCStringCopyN, JS_NewStringCopyZ,
JS_NewUCStringCopyZ, JS_InternString, JS_InternUCString, JS_InternUCStringN,
JS_GetStringChars, JS_GetStringBytes, JS_GetStringLength, JS_CompareStrings,
JS_malloc

JS_NewUCStringCopyN

Function. Creates a new Unicode-encoded JS string of a specified size.

Syntax JSString * JS_NewUCSt ri ngCopyN(JSCont ext *cx, const jschar *s,
size_ t n);
Argument Type Description
CX JSCont ext * Pointer to a JS context from which to derive run time information.
S const jschar * Pointerto the Unicode character array containing the text for the JS string to
create.
n size_t Maximum number of Unicode characters to copy from s into the JS string.
Description JS_NewUCSt ri ngCopyN allocates space for a JS string and its underlying

storage, and copies as many characters from a Unicode-encoded character
array, s, as possible, up to n characters, into the new JS string. If the number of
characters in s is greater than the number of characters specified in n, the new

162 JavaScript C Engine API Reference

Function Definitions

JS string contains a truncated version of the original string. If the number of
characters in s is less than the number of bytes specified in n, the new JS string
is padded with nulls to the specified length.

You can use JS_NewUCSt ri ngCopyN to copy binary data, which may contain
ASCII 0 characters. You can also use this function when you want to copy only
a certain portion of a Unicode-encoded string into a JS string.

If the allocation is successful, JS_NewUCSt r i ngCopyN returns a pointer to the JS
string. Otherwise it returns NULL.

See also JS_GetEmptyStringValue, JS_ValueToString, JS_ConvertValue, JS_NewDouble,
JS_NewObiject, JS_NewArrayObject, JS_NewFunction, JS_NewsString,
JS_NewUCString, JS_NewsStringCopyN, JS_NewStringCopyZ,
JS_NewUCStringCopyZ, JS_InternString, JS_InternUCString, JS_InternUCStringN,
JS_GetStringChars, JS_GetStringBytes, JS_GetStringLength, JS_CompareStrings,
JS_malloc

JS_NewStringCopyZ

Function. Creates a new JS string and ensures that the resulting string is null-
terminated.

Syntax JSString * JS NewStringCopyZ(JSContext *cx, const char *s);
Argument Type Description
CX JSCont ext * Pointer to a JS context from which to derive run time information.
S const char * Pointer to the character array containing the text for the JS string to create.

Description JS_NewSt ri ngCopyZ allocates space for a new JS string and its underlying
storage, and then copies the contents of a C character array, s, into the new
string. The new JS string is guaranteed to be null-terminated.

If the allocation is successful, JS_NewSt ri ngCopyZ returns a pointer to the JS
string. Otherwise it returns an empty string.

See also JS_GetEmptyStringValue, JS_ValueToString, JS_ConvertValue, JS_NewDouble,
JS_NewObiject, JS_NewArrayObject, JS_NewFunction, JS_NewsString,
JS_NewUCString, JS_NewsStringCopyN, JS_NewUCStringCopyN,
JS_NewUCStringCopyZ, JS_InternString, JS_InternUCString, JS_InternUCStringN,
JS_GetStringChars, JS_GetStringBytes, JS_GetStringLength, JS_CompareStrings,
JS_malloc

Chapter 2, JavaScript API Reference 163

Function Definitions

JS_NewUCStringCopyZ

Function. Creates a new Unicode-encoded JS string and ensures that the
resulting string is null-terminated.

Syntax JSString * JS_NewUCStri ngCopyZ(JSCont ext *cx, const jschar *s);
Argument Type Description
cX JSCont ext * Pointer to a JS context from which to derive run time information.
s const jschar * Pointer to the character array containing the text for the JS string to create.

Description JS_NewUCSt ri ngCopyZ allocates space for a new, Unicode-encoded JS string
and its underlying storage, and then copies the contents of a character array, s,
into the new string. The new JS string is guaranteed to be null-terminated.

If the allocation is successful, JS_NewUCSt r i ngCopyZ returns a pointer to the JS
string. Otherwise it returns an empty string.

See also JS_GetEmptyStringValue, JS_ValueToString, JS_ConvertValue, JS_NewDouble,
JS_NewObiject, JS_NewArrayObject, JS_NewFunction, JS_NewsString,
JS_NewUCString, JS_NewsStringCopyN, JS_NewUCStringCopyN,
JS_NewsStringCopyZ, JS_InternString, JS_InternUCString, JS_InternUCStringN,
JS_GetStringChars, JS_GetStringBytes, JS_GetStringLength, JS_CompareStrings,
JS_malloc

JS_InternString

Function. Creates a new, static JS string whose value is automatically shared by
all string literals that are identical.

Syntax JSString * JS InternString(JSContext *cx, const char *s);
Argument Type Description

cX JSCont ext * Pointer to a JS context from which to derive run time information.
s const char * Pointer to the character array containing the text for the JS string to create.

Description JS_InternString creates a new JS string with a specified value, s, if it does
not already exist. The char array, s, must be allocated on the heap. The JS
string is an interned, Unicode version of s, meaning that independent C
variables that define a matching string will, when translated to a JS string value

164 JavaScript C Engine API Reference

See also

Function Definitions

using JS I nternStri ng, share the same internal copy of the JS string, rather
than define their own, separate copies in memory. Use this function to save
space allocation on the heap.

If it creates or reuses an interned string, JS_|I nt er nSt ri ng returns a pointer to
the string. Otherwise, on error, it returns NULL.

JS_GetEmptyStringValue, JS_ValueToString, JS_ConvertValue, JS_NewDouble,
JS_NewObiject, JS_NewArrayObject, JS_NewFunction, JS_NewsString,
JS_NewUCString, JS_NewsStringCopyN, JS_NewUCStringCopyN,
JS_NewsStringCopyZ, JS_NewUCStringCopyZ, JS_InternUCString,
JS_InternUCStringN, JS_GetStringChars, JS_GetStringBytes, JS_GetStringLength,
JS_CompareStrings

JS_InternUCString

Syntax

Description

See also

Function. Creates a new, static, Unicode-encoded JS string whose value is
automatically shared by all string literals that are identical.

JSString * JS_ InternUCString(JSContext *cx, const jschar *s);

JS InternUCString creates a new, Unicode-encoded JS string with a specified
value, s, if it does not already exist. The char array, s, must be allocated on the
heap. The JS string is an interned, Unicode version of s, meaning that
independent C variables that define a matching string will, when translated to a
JS string value using JS_I nt er nUCSt ri ng, share the same internal copy of the
JS string, rather than define their own, separate copies in memory. Use this
function to save space allocation on the heap.

If it creates or reuses an interned string, JS_I nt er nUCSt ri ng returns a pointer
to the string. Otherwise, on error, it returns NULL.

JS_GetEmptyStringValue, JS_ValueToString, JS_ConvertValue, JS_NewDouble,
JS_NewObiject, JS_NewArrayObject, JS_NewFunction, JS_NewsString,
JS_NewUCString, JS_NewsStringCopyN, JS_NewUCStringCopyN,
JS_NewsStringCopyZ, JS_NewUCStringCopyZ, JS_InternString,
JS_InternUCStringN, JS_GetStringChars, JS_GetStringBytes, JS_GetStringLength,
JS_CompareStrings

Chapter 2, JavaScript API Reference 165

Function Definitions

JS_InternUCStringN

Syntax

Description

See also

Function. Creates a new, static, Unicode-encoded, JS string of a specified size
whose value is automatically shared by all string literals that are identical.

JSString * JS_ InternUCStringN(JSCont ext *cx, const jschar *s,
size_t length);

JS_InternUCSt ri ngN creates a new, Unicode-encoded JS string with a
specified value, s, up to | engt h characters in size, if it does not already exist. If
the number of characters in s is greater than the number of characters specified
in | engt h, the new JS string contains a truncated version of the original string.
If the number of characters in s is less than the number of bytes specified in

| engt h, the new JS string is padded with nulls to the specified length.

The char array, s, must be allocated on the heap. The JS string is an interned,
Unicode version of s, meaning that independent C variables that define a
matching string will, when translated to a JS string value using

JS I nternUCStringN, share the same internal copy of the JS string, rather than
define their own, separate copies in memory. Use this function to save space
allocation on the heap.

If it creates or reuses an interned string, JS_I nt er nUCSt ri ngN returns a
pointer to the string. Otherwise, on error, it returns NULL.

JS_GetEmptyStringValue, JS_ValueToString, JS_ConvertValue, JS_NewDouble,
JS_NewObiject, JS_NewArrayObject, JS_NewFunction, JS_NewsString,
JS_NewUCString, JS_NewsStringCopyN, JS_NewUCStringCopyN,
JS_NewsStringCopyZ, JS_NewUCStringCopyZ, JS_InternString, JS_InternUCString,
JS_GetStringChars, JS_GetStringBytes, JS_GetStringLength, JS_CompareStrings

JS_GetStringChars

Syntax

Description

Function. Retrieves the pointer to a specified string.
jschar * JS CGetStringChars(JSString *str);

JS_Get StringChars provides a Unicode-enabled pointer to a JS string, str.

166 JavaScript C Engine API Reference

See also

Function Definitions

JS_GetEmptyStringValue, JS_ValueToString, JS_ConvertValue, JS_NewDouble,
JS_NewObiject, JS_NewArrayObject, JS_NewFunction, JS_NewsString,
JS_NewUCString, JS_NewsStringCopyN, JS_NewUCStringCopyN,
JS_NewsStringCopyZ, JS_NewUCStringCopyZ, JS_InternString, JS_InternUCString,
JS_InternUCStringN, JS_GetStringBytes, JS_GetStringLength, JS_CompareStrings

JS_GetStringBytes

Syntax

Description

See also

Function. Translates a JS string into a C character array.
char * JS CetStringBytes(JSString *str);

JS Get StringByt es translates a specified JS string, st r, into a C character
array. If successful, JS Get St ri ngByt es returns a pointer to the array. The
array is automatically freed when st r is finalized by the JavaScript garbage
collection mechanism.

JS_GetEmptyStringValue, JS_ValueToString, JS_ConvertValue, JS_NewDouble,
JS_NewObiject, JS_NewArrayObject, JS_NewFunction, JS_NewsString,
JS_NewsStringCopyN, JS_NewsStringCopyZ, JS_InternString, JS_GetStringLength,
JS_CompareStrings

JS_GetStringLength

Syntax

Description

See also

Function. Determines the length, in characters, of a JS string.
size_t JS CetStringLength(JSString *str);

JS_Get StringLengt h reports the length, in characters, of a specified JS string,
st r. Note that JS strings are stored in Unicode format, so

JS _Get StringLengt h does not report the number of bytes allocated to a
string, but the number of characters in the string.

JS_GetEmptyStringValue, JS_ValueToString, JS_ConvertValue, JS_NewDouble,
JS_NewObiject, JS_NewArrayObject, JS_NewFunction, JS_NewsString,
JS_NewsStringCopyN, JS_NewStringCopyZ, JS_InternString, JS_GetStringBytes,
JS_CompareStrings

Chapter 2, JavaScript API Reference 167

Function Definitions

JS_CompareStrings

Function. Compares two JS strings, and reports the results of the comparison.

Syntax intN JS ConpareStrings(JSString *strl, JSString *str2);
Argument Type Description
strl JSString * First string to compare.
str2 JSString * Second string to compare.

Description JS_Conpar eSt ri ngs compares two JS strings, str 1 and st r 2. If the strings are
identical in content and size, JS_Conpar eSt ri ngs returns O.

If str1is greater than st r 2, either in terms of its internal alphabetic sort order,
or because it is longer in length, JS_Conpar eSt ri ngs returns a positive value.

If str1is less than st r 2, either in terms of its internal alphabetic sort order, or
because it is shorter in length, JS_Conpar eSt ri ngs returns a negative value.

See also JS_GetEmptyStringValue, JS_ValueToString, JS_ConvertValue, JS_NewDouble,
JS_NewObiject, JS_NewArrayObject, JS_NewFunction, JS_NewsString,
JS_NewsStringCopyN, JS_NewStringCopyZ, JS_InternString, JS_GetStringBytes,
JS_GetStringLength

JS ReportError

Function. Creates a formatted error message to pass to a user-defined error
reporting function.

Syntax void JS ReportError(JSContext *cx, const char *format, ...);
Argument Type Description
CX JSCont ext * Pointer to a JS context from which to derive run time information.
f or mat const char * Format string to convert into an error message using a standard C sprintf

conversion routine.
Error message variables to insert into the format string.

Description JS_Report Error converts a format string and its arguments, f or mat , into an
error message using a sprintf-like conversion routine. The resulting string is
automatically passed to the user-defined error reporting mechanism. That

168 JavaScript C Engine API Reference

Function Definitions

mechanism might display the error message in a console or dialog box window
(as in Navigator 2.0 and greater), or might write the error message to an error
log file maintained by the application.

Specify an error reporting mechanism for your application using
JS_Set ErrorReporter.

See also JS_ReportOutOfMemory, JS_SetErrorReporter

JS_ReportOutOfMemory

Function. Reports a memory allocation error for a specified JS execution
context.

Syntax void JS_Report Qut Of Menory(JSCont ext *cx);

Description JS_Report Qut Of Menory calls JS Report Error with a format string set to “out
of memory”. This function is called by the JS engine when a memory allocation
in the JS memory pool fails.

See also JS_ReportError, JS_SetErrorReporter

JS_SetErrorReporter

Function. Specifies the error reporting mechanism for an application.

Syntax JSErrorReporter JS_SetErrorReporter(JSContext *cx,
JSErrorReporter er);

Argument Type Description
cX JSCont ext * Pointer to a JS context from which to derive run time information.
er JSError Reporter The user-defined error reporting function to use in your application.

Description JS_Set Err or Report er enables you to define and use your own error
reporting mechanism in your applications. The reporter you define is
automatically passed a JSErr or Report structure when an error occurs and has
been parsed by JS_ReportError.

Chapter 2, JavaScript API Reference 169

Function Definitions

Typically, the error reporting mechanism you define should log the error where
appropriate (such as to a log file), and display an error to the user of your
application. The error you log and display can make use of the information
passed about the error condition in the JSErr or Report structure.

See also JS_ReportError, JS_ReportOutOfMemory, JSErrorReport

170 JavaScript C Engine API Reference

